Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Neural network potentials with effective charge separation for non-equilibrium dynamics of ionic solids: a ZnO case study
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 January 2026

Neural network potentials with effective charge separation for non-equilibrium dynamics of ionic solids: a ZnO case study

  • Gang Seob Jung  ORCID: orcid.org/0000-0002-8047-65051 &
  • Lei Cheng2 

npj Computational Materials , Article number:  (2026) Cite this article

  • 797 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Physics

Abstract

Developing neural network potentials (NNPs) accurate under non-equilibrium dynamics is challenging, as such systems require extensive sampling beyond equilibrium phases. Here we construct high-fidelity NNPs for zinc oxide (ZnO), a polymorphic ionic solid, using density functional theory (DFT) reference data. To efficiently capture transitional configurations, we combine enhanced-sampling molecular dynamics with empirical potentials, data distillation, and pretraining on short-range atomic energies (A-Train), followed by transfer learning with DFT-relabeled datasets. This hierarchical approach improves transferability across polymorphs and stress states. We further introduce effective charge separation, treating long-range Coulombic terms analytically while short-range residual interactions are learned by the NNP. The optimal effective charges fall in the range 0.5–1.0 qe, consistent with dielectric-screened values derived from formal charges but distinct from Bader estimates. Motivated by this observation, we propose a simple data-driven protocol in which effective charges are optimized by comparing DFT reference energies with explicit Coulomb calculations, without additional NNP training. This strategy improves accuracy and transferability in DFT-level predictions of energies, forces, and stress. Together, these results provide a practical charge-selection framework for robust NNP development in ionic solids, enabling reliable simulation of polymorphic phase transformations and non-equilibrium dynamics.

Similar content being viewed by others

Accurate large-scale simulations of siliceous zeolites by neural network potentials

Article Open access 19 August 2022

Exploring dynamic solvation kinetics at electrocatalyst surfaces

Article Open access 18 September 2024

Transferable dispersion-aware machine learning interatomic potentials for multilayer transition metal dichalcogenide heterostructures

Article Open access 24 August 2025

Data availability

LAMMPS input files for running molecular dynamics simulations with the trained NNP using the hybrid/overlay pair style are available at: (https://github.com/gsjung0419/Hybrid_NNP). Atomic energy training (A-Train) and transfer learning examples are available at: (https://github.com/gsjung0419/TorchANITutorials). The additional data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Escobar, A., Donado, F., Moctezuma, R. E. & Weeks, E. R. Direct observation of crystal nucleation and growth in a quasi-two-dimensional nonvibrating granular system. Phys. Rev. E 104, 044904. https://doi.org/10.1103/PhysRevE.104.044904 (2021).

    Google Scholar 

  2. Sleutel, M., Lutsko, J., Van Driessche, A. E. S., Durán-Olivencia, M. A. & Maes, D. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision. Nat. Commun. 5, 5598 (2014).

    Google Scholar 

  3. Li, M. et al. Revealing thermally-activated nucleation pathways of diffusionless solid-to-solid transition. Nat. Commun. 12, 4042 (2021).

    Google Scholar 

  4. Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    Google Scholar 

  5. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760. https://doi.org/10.1126/science.aaa6760 (2015).

    Google Scholar 

  6. Matsumoto, M., Saito, S. & Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409–413, https://doi.org/10.1038/416409a (2002).

    Google Scholar 

  7. Wang, J. et al. Molecular dynamics and density functional studies of a body-centered-tetragonal polymorph of ZnO. Phys. Rev. B—Condens. Matter Mater. Phys. 76, 172103 (2007).

    Google Scholar 

  8. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. 99, 12562, https://doi.org/10.1073/pnas.202427399 (2002).

    Google Scholar 

  9. Okumura, H. & Okamoto, Y. Multibaric–multithermal ensemble molecular dynamics simulations. J. Comput. Chem. 27, 379–395, https://doi.org/10.1002/jcc.20351 (2006).

    Google Scholar 

  10. Yoshimoto, Y. Extended multicanonical method combined with thermodynamically optimized potential: Application to the liquid-crystal transition of silicon. J. Chem. Phys. 125, 184103. https://doi.org/10.1063/1.2363987 (2006).

    Google Scholar 

  11. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151, https://doi.org/10.1016/S0009-2614(99)01123-9 (1999).

    Google Scholar 

  12. Behler, J. & Csányi, G. Machine learning potentials for extended systems: a perspective. Eur. Phys. J. B 94, 142. https://doi.org/10.1140/epjb/s10051-021-00156-1 (2021).

    Google Scholar 

  13. Kocer, E., Ko, T. W. & Behler, J. Neural network potentials: a concise overview of methods. Annu. Rev. Phys. Chem. 73, 163–186, https://doi.org/10.1146/annurev-physchem-082720-034254 (2022).

    Google Scholar 

  14. Pinheiro, M., Ge, F., Ferré, N., Dral, P. O. & Barbatti, M. Choosing the right molecular machine learning potential. Chem. Sci. 12, 14396–14413, https://doi.org/10.1039/D1SC03564A (2021).

    Google Scholar 

  15. Unke, O. T. et al. Machine Learning Force Fields. Chem. Rev. 121, 10142–10186, https://doi.org/10.1021/acs.chemrev.0c01111 (2021).

    Google Scholar 

  16. Lorenz, S., Groß, A. & Scheffler, M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 395, 210–215 (2004).

    Google Scholar 

  17. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401. https://doi.org/10.1103/PhysRevLett.98.146401 (2007).

    Google Scholar 

  18. Jung, G. S., Choi, J. Y. & Lee, S. M. Active learning of neural network potentials for rare events. Digit. Discov. https://doi.org/10.1039/D3DD00216K (2024).

    Google Scholar 

  19. Mehdi, S., Smith, Z., Herron, L., Zou, Z. & Tiwary, P. Enhanced sampling with machine learning. Annu. Rev. Phys. Chem. 75, 347–370, https://doi.org/10.1146/annurev-physchem-083122-125941 (2024).

    Google Scholar 

  20. Jung, G. S. Enhancing high-fidelity neural network potentials through low-fidelity sampling. APL Mach. Learn. 2, 046102. https://doi.org/10.1063/5.0222779 (2024).

    Google Scholar 

  21. Jung, G. S., Lee, S. & Choi, J. Y. Data Distillation for Neural Network Potentials toward Foundational Dataset. OpenReview.net https://openreview.net/forum?id=mE6ldawl0n (2024).

  22. Jung, G. S. Atomic energy accuracy of neural network potentials: harnessing pretraining and transfer learning. J. Chem. Inf. Model. 65, 4797–4807, https://doi.org/10.1021/acs.jcim.5c00079 (2025).

    Google Scholar 

  23. Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, https://doi.org/10.1063/1.1992666 (2005).

  24. Ashrafi, A. & Jagadish, C. Review of zincblende ZnO: Stability of metastable ZnO phases. J. Appl. Phys. 102, https://doi.org/10.1063/1.2787957 (2007).

  25. Rasoulkhani, R. et al. Energy landscape of ZnO clusters and low-density polymorphs. Phys. Rev. B 96, 064108 (2017).

    Google Scholar 

  26. Santiso, E. E. & Trout, B. L. A general set of order parameters for molecular crystals. J. Chem. Phys. 134, https://doi.org/10.1063/1.3548889 (2011).

  27. Tong, H. & Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 10, 5596 (2019).

    Google Scholar 

  28. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805, https://doi.org/10.1103/PhysRevB.28.784 (1983).

    Google Scholar 

  29. Murata, K. -i & Tanaka, H. Microscopic identification of the order parameter governing liquid–liquid transition in a molecular liquid. Proc. Natl. Acad. Sci. 112, 5956–5961 (2015).

    Google Scholar 

  30. Yoshimoto, Y. Melting of MgO studied using a multicanonical ensemble method combined with a first-principles calculation. J. Phys. Soc. Jpn. 79, 034602 (2010).

    Google Scholar 

  31. Invernizzi, M., Piaggi, P. M. & Parrinello, M. Unified approach to enhanced sampling. Phys. Rev. X 10, 041034. https://doi.org/10.1103/PhysRevX.10.041034 (2020).

    Google Scholar 

  32. Jung, G. S., Yoshimoto, Y., Oh, K. J. & Tsuneyuki, S. Extended ensemble molecular dynamics for thermodynamics of phases. arXiv preprint arXiv:2308.08098 (2023).

  33. Ghasemi, S. A., Hofstetter, A., Saha, S. & Goedecker, S. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network. Phys. Rev. B 92, 045131 (2015).

    Google Scholar 

  34. Kocer, E. et al. Iterative charge equilibration for fourth-generation high-dimensional neural network potentials. J. Chem. Phys. 162, 124106 (2025).

    Google Scholar 

  35. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398. https://doi.org/10.1038/s41467-020-20427-2 (2021).

    Google Scholar 

  36. Cheng, B. Latent Ewald summation for machine learning of long-range interactions. npj Comput. Mater. 11, 80. https://doi.org/10.1038/s41524-025-01577-7 (2025).

    Google Scholar 

  37. Wang, Y. et al. Neural P $ 3$ M: a long-range interaction modeling enhancer for geometric GNNs. Adv. Neural Inf. Process. Syst. 37, 120336–120365 (2024).

    Google Scholar 

  38. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 21, 084204 (2009).

    Google Scholar 

  39. Li, Q.-J. et al. Development of robust neural-network interatomic potential for molten salt. Cell Rep. Phys. Sci. 2, 2021 (2021).

    Google Scholar 

  40. Shen, C. et al. SuperSalt: equivariant neural network force fields for multicomponent molten salts system. Nat. Commun. 16, 7280. https://doi.org/10.1038/s41467-025-62450-1 (2025).

    Google Scholar 

  41. Chen, X. et al. TensorAlloy: An automatic atomistic neural network program for alloys. Comput. Phys. Commun. 250, 107057 (2020).

    Google Scholar 

  42. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Google Scholar 

  43. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Google Scholar 

  44. Gubler, M., Finkler, J. A., Schäfer, M. R., Behler, J. & Goedecker, S. Accelerating fourth-generation machine learning potentials using quasi-linear scaling particle mesh charge equilibration. J. Chem. Theory Comput. 20, 7264–7271, https://doi.org/10.1021/acs.jctc.4c00334 (2024).

    Google Scholar 

  45. Schleife, A., Fuchs, F., Furthmüller, J. & Bechstedt, F. First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B—Condens. Matter Mater. Phys. 73, 245212 (2006).

    Google Scholar 

  46. Calzolari, A. & Nardelli, M. B. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach. Sci. Rep. 3, 2999. https://doi.org/10.1038/srep02999 (2013).

    Google Scholar 

  47. Morkoç, H. & Özgür, Ü. Zinc oxide: fundamentals, materials and device technology. (John Wiley & Sons, 2008).

  48. Segura, A., Sans, J. A., Manjón, F. J., Munoz, A. & Herrera-Cabrera, M. J. Optical properties and electronic structure of rock-salt ZnO under pressure. Appl. Phys. Lett. 83, 278–280 (2003).

    Google Scholar 

  49. Agrawal, R., Peng, B. & Espinosa, H. D. Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 9, 4177–4183 (2009).

    Google Scholar 

  50. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19, https://doi.org/10.1006/jcph.1995.1039 (1995).

    Google Scholar 

  51. Lewis, G. V. & Catlow, C. R. A. Potential models for ionic oxides. J. Phys. C: Solid State Phys. 18, 1149 (1985).

    Google Scholar 

  52. Crain, J. et al. Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043–13046, https://doi.org/10.1103/PhysRevB.50.13043 (1994).

    Google Scholar 

  53. Beniash, E. et al. The hidden structure of human enamel. Nat. Commun. 10, 4383. https://doi.org/10.1038/s41467-019-12185-7 (2019).

    Google Scholar 

  54. Jung, G. S. & Buehler, M. J. Multiscale modeling of muscular-skeletal systems. Annu. Rev. Biomed. Eng. 19, 435–457, https://doi.org/10.1146/annurev-bioeng-071516-044555 (2017).

    Google Scholar 

  55. Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053, https://doi.org/10.1103/PhysRevLett.86.2050 (2001).

    Google Scholar 

  56. Jung, G. S., Irle, S. & Sumpter, B. G. Dynamic aspects of graphene deformation and fracture from approximate density functional theory. Carbon 190, 183–193, https://doi.org/10.1016/j.carbon.2022.01.002 (2022).

    Google Scholar 

  57. Jung, G. S., Myung, H. & Irle, S. Artificial neural network potentials for mechanics and fracture dynamics of two-dimensional crystals*. Mach. Learn.: Sci. Technol. 4, 035001, https://doi.org/10.1088/2632-2153/accd45 (2023).

    Google Scholar 

  58. Jung, G. S., Choi, J. Y. & Lee, S. M. AL-ASMR: Active Learning of Atomistic Surrogate Models for Rare Events. (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), 2023).

  59. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502, https://doi.org/10.1088/0953-8984/21/39/395502 (2009).

    Google Scholar 

  60. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 29, 465901, https://doi.org/10.1088/1361-648x/aa8f79 (2017).

    Google Scholar 

  61. Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337–350, https://doi.org/10.1016/j.commatsci.2014.07.043 (2014).

    Google Scholar 

  62. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979, https://doi.org/10.1103/PhysRevB.50.17953 (1994).

    Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865 (1996).

    Google Scholar 

  64. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104. https://doi.org/10.1063/1.3382344 (2010).

    Google Scholar 

  65. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002, https://doi.org/10.1088/1361-648X/aa680e (2017).

    Google Scholar 

  66. Loche, P. et al. Fast and flexible long-range models for atomistic machine learning. J. Chem. Phys. 162, 142501 (2025).

    Google Scholar 

  67. Gao, X., Ramezanghorbani, F., Isayev, O., Smith, J. S. & Roitberg, A. E. TorchANI: a free and open source PyTorch-based deep learning implementation of the ANI neural network potentials. J. Chem. Inf. Model. 60, 3408–3415, https://doi.org/10.1021/acs.jcim.0c00451 (2020).

    Google Scholar 

  68. Hendrycks, D. & Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv [cs.LG] (2020).

  69. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2017).

  70. Loshchilov, I. & Hutter, F. Decoupled Weight Decay Regularization. arXiv [cs.LG] (2019).

  71. Raymand, D., Van Duin, A. C. T., Baudin, M. & Hermansson, K. A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 602, 1020–1031 (2008).

    Google Scholar 

Download references

Acknowledgements

This research used resources from the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory and National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility for access to additional supercomputing resources. This work is also supported as a part of a user project at the Center for Nanophase Materials Sciences (CNMS), a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. This work was supported by the Laboratory Directed Research and Development Program (LDRD) of Oak Ridge National Laboratory (NEAT), managed by UT-Battelle, LLC, for the US Department of Energy under contract DEAC05-00OR22725.

Author information

Authors and Affiliations

  1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    Gang Seob Jung

  2. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    Lei Cheng

Authors
  1. Gang Seob Jung
    View author publications

    Search author on:PubMed Google Scholar

  2. Lei Cheng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.S.J. conceived the idea, developed codes, performed simulations, training, and evaluations, and wrote and edited the draft. L.C. contributed to the discussion and conceptual development and provided revisions to improve the manuscript.

Corresponding author

Correspondence to Gang Seob Jung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

MovieS1

MovieS2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, G.S., Cheng, L. Neural network potentials with effective charge separation for non-equilibrium dynamics of ionic solids: a ZnO case study. npj Comput Mater (2026). https://doi.org/10.1038/s41524-025-01946-2

Download citation

  • Received: 04 November 2025

  • Accepted: 26 December 2025

  • Published: 19 January 2026

  • DOI: https://doi.org/10.1038/s41524-025-01946-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Machine Learning Interatomic Potentials in Computational Materials

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing