Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Probing entropic control of stacking phase preference in layered oxide cathodes for sodium-ion batteries via machine-learning potentials
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

Probing entropic control of stacking phase preference in layered oxide cathodes for sodium-ion batteries via machine-learning potentials

  • Liang-Ting Wu1,2,
  • Zhong-Lun Li1,
  • Shih-Ying Yen1,
  • Payam Kaghazchi2,3 &
  • …
  • Jyh-Chiang Jiang1 

npj Computational Materials , Article number:  (2026) Cite this article

  • 1374 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Physics

Abstract

High-entropy layered oxides are promising sodium-ion battery (SIB) cathodes, yet the fundamental role of conformational entropy in stacking phase preference remains unclear. Here, we combine density functional theory (DFT), ab initio molecular dynamics (AIMD), and a fine-tuned CHGNet machine-learning interatomic potential (MLIP) to investigate representative high-entropy (Na0.8Ni0.2Fe0.2Co0.2Mn0.2Ti0.2O2) and low-entropy (Na0.8Mn0.6Co0.4O2) layered oxides in both O3 and P2 phases. A three-stage Monte Carlo sampling strategy was developed to explore transition-metal arrangements, Na/vacancy distributions, and representative low-energy conformations. The fine-tuned CHGNet achieved near-DFT accuracy while enabling large-scale sampling at orders of magnitude lower cost. Our analyses reveal that high-entropy oxides exhibit stronger Na–TMO2 interactions, broader O–TM bond length distributions, and smaller interlayer distance ratios compared with their low-entropy counterparts. These structural features favor O3-phase stabilization in cases where conventional ionic-potential descriptors are insufficient to clearly distinguish between O3- and P2-type layered oxides. Bond-length analyses further indicate that Jahn–Teller distortions in Mn are mitigated in high-entropy oxides, contributing to enhanced structural stability. This study establishes conformational entropy as a decisive factor, alongside Na ionic and cationic potentials, in governing stacking phase stability, and highlights the power of MLIP-accelerated modeling for exploring high-entropy materials and guiding the rational design of next-generation SIB cathodes.

Similar content being viewed by others

Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering

Article Open access 27 February 2025

Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials

Article Open access 16 August 2025

Multicationic interactions mitigating lattice strain in sodium layered cathodes

Article Open access 13 May 2025

Data availability

The datasets generated and analyzed during the current study are available in https://github.com/KrisZhongLunLi/CHGNet-based-MC-sampling-toolkit.

References

  1. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Google Scholar 

  2. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Google Scholar 

  3. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Google Scholar 

  4. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Google Scholar 

  5. Masias, A., Marcicki, J. & Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021).

    Google Scholar 

  6. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017).

    Google Scholar 

  7. Tong, D. et al. Geophysical constraints on the reliability of solar and wind power worldwide. Nat. Commun. 12, 6146 (2021).

    Google Scholar 

  8. Killer, M., Farrokhseresht, M. & Paterakis, N. G. Implementation of large-scale Li-ion battery energy storage systems within the EMEA region. Appl. Energy 260, 114166 (2020).

    Google Scholar 

  9. Zhu, Z. et al. Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751 (2022).

    Google Scholar 

  10. Feng, X. et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 10, 246–267 (2018).

    Google Scholar 

  11. Liu, B. et al. Safety issues caused by internal short circuits in lithium-ion batteries. J. Mater. Chem. A 6, 21475–21484 (2018).

    Google Scholar 

  12. Liu, X. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2, 2047–2064 (2018).

    Google Scholar 

  13. Xu, H., Chen, H. & Gao, C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater. Lett. 3, 1221–1237 (2021).

    Google Scholar 

  14. Balaram, V., Santosh, M., Satyanarayanan, M., Srinivas, N. & Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 15, 101868 (2024).

    Google Scholar 

  15. Yao, A., Benson, S. M. & Chueh, W. C. Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries. Nat. Energy 10, 404–416 (2025).

    Google Scholar 

  16. Wang, C.-Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Google Scholar 

  17. Ji, Y., Zhang, Y. & Wang, C.-Y. Li-ion cell operation at low temperatures. J. Electrochem. Soc. 160, A636 (2013).

    Google Scholar 

  18. Qahtan, T. F., Alade, I. O., AlArjani, A. & Rahaman, M. S. Advancements in sodium-ion batteries: An in-depth scientometric review. J. Energy Storage 131, 117490 (2025).

    Google Scholar 

  19. Priyadarshi, N. in Water Encyclopedia 551–553.

  20. Abraham, K. M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5, 3544–3547 (2020).

    Google Scholar 

  21. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Google Scholar 

  22. Li, M. et al. Low-temperature performance of Na-ion batteries. Carbon Energy 6, e546 (2024).

    Google Scholar 

  23. Wang, K. et al. Recent advances in Mn-rich layered materials for sodium-ion batteries. Adv. Funct. Mater. 33, 2212607 (2023).

    Google Scholar 

  24. Kim, H.-J. et al. Synergetic impact of dual substitution on anionic–Cationic activity of P2-type sodium manganese oxide. Energy Storage Mater. 66, 103224 (2024).

    Google Scholar 

  25. Voronina, N. et al. Synergetic lattice and surface engineering: stable high-voltage cycle performance in P3-type layered manganese oxide. Adv. Energy Mater. n/a, 2501823.

  26. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C. 99, 81–85 (1980).

    Google Scholar 

  27. Voronina, N. et al. A new approach to stable cationic and anionic redox activity in O3-layered cathode for sodium-ion batteries. Adv. Energy Mater. 11, 2100901 (2021).

    Google Scholar 

  28. Voronina, N. et al. Electronic structure engineering of honeycomb layered cathode material for sodium-ion batteries. Adv. Energy Mater. 11, 2003399 (2021).

    Google Scholar 

  29. Ma, X. et al. Structural and electrochemical progress of O3-type layered oxide cathodes for Na-ion batteries. Nanoscale 15, 14737–14753 (2023).

    Google Scholar 

  30. Oh, S.-M. et al. High capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem. Mater. 26, 6165–6171 (2014).

    Google Scholar 

  31. Cho, M.-J. et al. Theoretical and Experimental Optimization of P2-Type Sodium-Ion Battery Cathodes via Li, Mg, and Ni Co-Doping: A Path to Enhanced Capacity and Stability. Adv. Energy Mater. 15, 2405112 (2025).

    Google Scholar 

  32. Yang, L. et al. Structural Aspects of P2-Type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodium-Ion Batteries. Adv. Funct. Mater. 31, 2102939 (2021).

    Google Scholar 

  33. Anang, D. A. et al. O3-type layer-structured Na0.8[Ni1/5Fe1/5Co1/5Mn1/5Ti1/5]O2 as long life and high power cathode material for sodium-ion batteries. Ceram. Int. 45, 23164–23171 (2019).

    Google Scholar 

  34. Liu, Z. et al. Achieving a Deeply Desodiated Stabilized Cathode Material by the High Entropy Strategy for Sodium-ion Batteries. Angew. Chem. Int. Ed. 63, e202405620 (2024).

    Google Scholar 

  35. Zeng, Z. et al. High-entropy O3-type cathode enabling low-temperature performance for sodium-ion batteries. Nano Energy 128, 109813 (2024).

    Google Scholar 

  36. Wang, X.-Z. et al. Fast Na+ Kinetics and Suppressed Voltage Hysteresis Enabled by a High-Entropy Strategy for Sodium Oxide Cathodes. Adv. Mater. 36, 2312300 (2024).

    Google Scholar 

  37. Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput Mater. 2, 16002 (2016).

    Google Scholar 

  38. Wu, L.-T., Hwang, B. J. & Jiang, J.-C. Combined machine learning and computational protocols to predict electrolyte behavior and SEI formation in Li-metal batteries. Chem. Eng. J. 515, 163801 (2025).

    Google Scholar 

  39. Ito, D., Jang, S.-H., Ando, H., Momma, T. & Tateyama, Y. Dissimilar Diffusion Mechanisms of Li+, Na+, and K+ Ions in Anhydrous Fe-Based Prussian Blue Cathode. J. Am. Chem. Soc. 147, 25441–25453 (2025).

    Google Scholar 

  40. Wu, L.-T., Zhan, Y.-T., Chiu, Y.-C., Hwang, B. J. & Jiang, J.-C. Multifunctional Zwitterionic Self-Healing Polymer Electrolytes for Anode-Free Lithium-Metal Batteries: a Computational Perspective. Small 21, 2503382 (2025).

    Google Scholar 

  41. Sasaki, R., Gao, B., Hitosugi, T. & Tateyama, Y. Nonequilibrium molecular dynamics for accelerated computation of ion–ion correlated conductivity beyond Nernst–Einstein limitation. npj Comput. Mater. 9, 48 (2023).

    Google Scholar 

  42. Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Google Scholar 

  43. Takenaka, N., Bouibes, A., Yamada, Y., Nagaoka, M. & Yamada, A. Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism. Adv. Mater. 33, 2100574 (2021).

    Google Scholar 

  44. Spotte-Smith, E. W. C. et al. Chemical Reaction Networks Explain Gas Evolution Mechanisms in Mg-Ion Batteries. J. Am. Chem. Soc. 145, 12181–12192 (2023).

    Google Scholar 

  45. Wen, M. et al. Chemical reaction networks and opportunities for machine learning. Nat. Comput. Sci. 3, 12–24 (2023).

    Google Scholar 

  46. Huang, H. et al. Delocalized electrolyte design enables 600 Wh kg−1 lithium metal pouch cells. Nature 644, 660–667 (2025).

    Google Scholar 

  47. Kim, M. S. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022).

    Google Scholar 

  48. Hou, T. et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 64, 103881 (2019).

    Google Scholar 

  49. Islam, M. M. & van Duin, A. C. T. Reductive Decomposition Reactions of Ethylene Carbonate by Explicit Electron Transfer from Lithium: An eReaxFF Molecular Dynamics Study. J. Phys. Chem. C. 120, 27128–27134 (2016).

    Google Scholar 

  50. Fong, K. D., Self, J., McCloskey, B. D. & Persson, K. A. Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic liquids. Macromolecules 53, 9503–9512 (2020).

    Google Scholar 

  51. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Google Scholar 

  52. Zhang, Y.-W. et al. Roadmap for the development of machine learning-based interatomic potentials. Model. Simul. Mater. Sci. Eng. 33, 023301 (2025).

    Google Scholar 

  53. Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).

    Google Scholar 

  54. Choudhary, K. et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater. 8, 59 (2022).

    Google Scholar 

  55. Cheng, B. Cartesian atomic cluster expansion for machine learning interatomic potentials. npj Comput. Mater. 10, 157 (2024).

    Google Scholar 

  56. Keith, J. A. et al. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem. Rev. 121, 9816–9872 (2021).

    Google Scholar 

  57. Elena, A. M. et al. Machine learned potential for high-throughput phonon calculations of metal—organic frameworks. npj Comput Mater. 11, 125 (2025).

    Google Scholar 

  58. Schütt, K. et al. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Adv. Neural Inf. Process. Syst. 30 (2017).

  59. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chem. Mater. 31, 3564–3572 (2019).

    Google Scholar 

  60. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Google Scholar 

  61. Ko, T. W. & Ong, S. P. Data-efficient construction of high-fidelity graph deep learning interatomic potentials. npj Comput. Mater. 11, 65 (2025).

    Google Scholar 

  62. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Google Scholar 

  63. Ko, T. W. et al. Materials Graph Library (MatGL), an open-source graph deep learning library for materials science and chemistry. npj Comput Mater. 11, 253 (2025).

    Google Scholar 

  64. Li, X.-L. et al. Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co2+/Co3+ Redox and Sodium-Site Doping for Layered Cathode Materials. Angew. Chem. Int. Ed. 60, 22026–22034 (2021).

    Google Scholar 

  65. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Google Scholar 

  66. Wu, L.-T. et al. Prediction of Structural Stability of Layered Oxide Cathode Materials: Combination of Machine Learning and Ab Initio Thermodynamics. Adv. Energy Mater. e05470, https://doi.org/10.1002/aenm.202505470 (2025).

  67. Köster, K., Binninger, T. & Kaghazchi, P. Optimization of Coulomb energies in gigantic configurational spaces of multi-element ionic crystals. npj Comput. Mater. 11, 202 (2025).

    Google Scholar 

  68. Liu, Y. et al. Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chem. Sci. 12, 1062–1067 (2021).

    Google Scholar 

  69. Li, Y. et al. Enhanced stability in a layered P2-Na0.67Fe0.5Mn0.5O2 cathode for sodium ion batteries via a synergistic Cu/Ti co-doping strategy. Inorg. Chem. Front. https://doi.org/10.1039/D5QI01070E (2025).

  70. Jin, J. et al. Intrinsic distortion against Jahn-Teller distortion: a new paradigm for high-stability Na-ion layered Mn-rich oxide cathodes. Angew. Chem. Int. Ed. 64, e202423728 (2025).

    Google Scholar 

  71. Tian, K. et al. Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. J. Mater. Chem. A 10, 14943–14953 (2022).

    Google Scholar 

  72. Xiong, X. et al. Atomic-level electric polarization in entropy-driven perovskites for boosting dielectric response. Adv. Mater. 37, 2415351 (2025).

    Google Scholar 

  73. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Google Scholar 

  74. Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 45, 581 (1968).

    Google Scholar 

  75. Pearson, R. G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 45, 643 (1968).

    Google Scholar 

  76. Murty, B. S., Yeh, J.-W., Ranganathan, S. & Bhattacharjee, P. P. High-entropy alloys. (Elsevier, 2019).

  77. Zhang, R.-Z. & Reece, M. J. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A 7, 22148–22162 (2019).

    Google Scholar 

  78. Takahashi, Y., Gotoh, Y. & Akimoto, J. Single-crystal growth, crystal and electronic structure of NaCoO2. J. Solid State Chem. 172, 22–26 (2003).

    Google Scholar 

  79. Horton, M. K. et al. Accelerated data-driven materials science with the Materials Project. Nature Materials, https://doi.org/10.1038/s41563-025-02272-0 (2025).

  80. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, https://doi.org/10.1063/1.4812323 (2013).

  81. Huang, Q. et al. Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2. Phys. Rev. B 70, 184110 (2004).

    Google Scholar 

  82. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  83. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Google Scholar 

  84. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Google Scholar 

  85. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  86. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  87. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  88. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, https://doi.org/10.1063/1.3382344 (2010).

  89. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  90. Pack, J. D. & Monkhorst, H. J. Special points for Brillouin-zone integrations”-a reply. Phys. Rev. B 16, 1748–1749 (1977).

    Google Scholar 

  91. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Google Scholar 

  92. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Google Scholar 

  93. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Google Scholar 

  94. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Google Scholar 

  95. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Science and Technology Council, Taiwan (NSTC 113-2113-M-011-003-MY3, 114-2639-E-011-001-ASP, 115-2927-I-011-502, and 114-2923-E-011-001) and Sustainable Electrochemical Energy Development (SEED) Center supported by the Ministry of Education (MOE), Taiwan. The authors thank the Taiwan National Center of High-Performance Computing (NCHC) for computing resources. We also acknowledge support from the UMC Fellowship.

Author information

Authors and Affiliations

  1. Department of Chemical Engineering; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan

    Liang-Ting Wu, Zhong-Lun Li, Shih-Ying Yen & Jyh-Chiang Jiang

  2. Materials Synthesis and Processing (IMD-2), Institute of Energy Materials and Devices, Forschungszentrum Jülich GmbH, Jülich, Germany

    Liang-Ting Wu & Payam Kaghazchi

  3. MESA+ Institute, University of Twente, Enschede, The Netherlands

    Payam Kaghazchi

Authors
  1. Liang-Ting Wu
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhong-Lun Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Shih-Ying Yen
    View author publications

    Search author on:PubMed Google Scholar

  4. Payam Kaghazchi
    View author publications

    Search author on:PubMed Google Scholar

  5. Jyh-Chiang Jiang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.T.W., Z.L.L., and S.Y.Y. designed and performed the computations under the supervision of P.K. and J.C.J. All authors discussed the computational results. L.T.W. wrote the manuscript with support from Z.L.L. and S.Y.Y. P.K., and J.C.J. contributed to revising the manuscript. J.C.J. served as the lead principal investigator.

Corresponding author

Correspondence to Jyh-Chiang Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LT., Li, ZL., Yen, SY. et al. Probing entropic control of stacking phase preference in layered oxide cathodes for sodium-ion batteries via machine-learning potentials. npj Comput Mater (2026). https://doi.org/10.1038/s41524-025-01954-2

Download citation

  • Received: 29 September 2025

  • Accepted: 30 December 2025

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s41524-025-01954-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Machine Learning Interatomic Potentials in Computational Materials

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing