Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Colossal magnetoresistance and unusual resistivity behaviors in magnetic semiconductors: Mn3Si2Te6 as a case study
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Colossal magnetoresistance and unusual resistivity behaviors in magnetic semiconductors: Mn3Si2Te6 as a case study

  • Zhihao Liu1,2,
  • Zhong Fang1,2,3,
  • Hongming Weng1,2,3 &
  • …
  • Quansheng Wu1,2 

npj Computational Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

Colossal magnetoresistance (CMR) is typically observed in manganites and magnetic semiconductors, marked by a resistivity peak near the magnetic transition temperature that is significantly suppressed by an applied magnetic field, commonly referred to as peak-type CMR. This type of CMR has attracted extensive research efforts over the past decades. However, in some materials such as Mn3Si2Te6, both peak-type and upturn-type CMR coexist—the latter characterized by a sharp resistivity upturn at low temperatures that is also strongly suppressed by an external field. Research on the coexistence of these two types of CMR remains relatively unexplored. In our work, we propose a theoretical framework to unravel the mechanisms underlying the above mentioned CMR phenomenon in magnetic semiconductors, and apply it to the ferrimagnetic semiconductor Mn3Si2Te6. The experimentally observed ρ(B, T) behaviors are accurately reproduced, including the upturn-type CMR, peak-type CMR, and movement of Tc (or resistivity peak) with fields. Additionally, the suppression of Tc and resistivity with increasing direct currents, possibly associated with current control of the chiral orbital current (COC) state in the previous work, can also be reproduced within our framework by properly accounting for the Joule heating effects. Our work provides a new perspective for quantitatively calculating and analyzing the unusual resistivity responses to temperature, field, and current in magnetic semiconductors.

Similar content being viewed by others

Control of chiral orbital currents in a colossal magnetoresistance material

Article 12 October 2022

Unconventional insulator-to-metal phase transition in Mn3Si2Te6

Article Open access 16 September 2024

Effect of ferrite content and temperature on the magnetic properties of Fe@SiO2@Mn-Zn-ferrite SMC materials

Article Open access 28 July 2025

Data availability

The data generated during this study are available from the corresponding authors upon request.

References

  1. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O Films. Science 264, 413–415 (1994).

    Google Scholar 

  2. Jin, S., McCormack, M., Tiefel, T. H. & Ramesh, R. Colossal magnetoresistance in La-Ca-Mn-O ferromagnetic thin films (invited). J. Appl. Phys. 76, 6929–6933 (1994).

    Google Scholar 

  3. Tokura, Y. et al. Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1−xSrxMnO3. J. Phys. Soc. Jpn. 63, 3931–3935 (1994).

    Google Scholar 

  4. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T. & Tokura, Y. A structural phase transition induced by an external magnetic field. Nature 373, 407–409 (1995).

    Google Scholar 

  5. Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14103–14109 (1995).

    Google Scholar 

  6. Röder, H., Zang, J. & Bishop, A. R. Lattice effects in the colossal-magnetoresistance manganites. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Google Scholar 

  7. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).

    Google Scholar 

  8. Zener, C. Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Google Scholar 

  9. Anderson, P. W. & Hasegawa, H. Considerations on double exchange. Phys. Rev. 100, 675–681 (1955).

    Google Scholar 

  10. de Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960).

    Google Scholar 

  11. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Google Scholar 

  12. Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996).

    Google Scholar 

  13. Salamon, M. B. & Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583–628 (2001).

    Google Scholar 

  14. Shapira, Y. & Reed, T. B. Resistivity and Hall effect of EuS in fields up to 140 kOe. Phys. Rev. B 5, 4877–4890 (1972).

    Google Scholar 

  15. Oliver, M. R., Dimmock, J. O., McWhorter, A. L. & Reed, T. B. Conductivity studies in europium oxide. Phys. Rev. B 5, 1078–1098 (1972).

    Google Scholar 

  16. Shapira, Y., Foner, S. & Reed, T. B. EuO. i. resistivity and Hall effect in fields up to 150 kOe. Phys. Rev. B 8, 2299–2315 (1973).

    Google Scholar 

  17. Konno, T. J., Wakoh, K., Sumiyama, K. & Suzuki, K. Electrical resistivity of Eu-rich EuO thin films. Jpn. J. Appl. Phys. 37, L787 (1998).

    Google Scholar 

  18. Sun, C. P. et al. Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2S4. Appl. Phys. Lett. 96, 122109 (2010).

    Google Scholar 

  19. Lin, C. et al. Spin correlations and colossal magnetoresistance in HgCr2Se4. Phys. Rev. B 94, 224404 (2016).

    Google Scholar 

  20. Nagaev, E. L. Magnetoimpurity theory of manganites and other colossal magnetoresistance materials. Aust. J. Phys. 52, 305 (1999).

    Google Scholar 

  21. Nagaev, E. L. Colossal-magnetoresistance materials: Manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387–531 (2001).

    Google Scholar 

  22. Majumdar, P. & Littlewood, P. Magnetoresistance in Mn pyrochlore: Electrical transport in a low carrier density ferromagnet. Phys. Rev. Lett. 81, 1314–1317 (1998).

    Google Scholar 

  23. Süllow, S. et al. Magnetotransport in the low carrier density ferromagnet EuB6. J. Appl. Phys. 87, 5591–5593 (2000).

    Google Scholar 

  24. Yang, Z., Bao, X., Tan, S. & Zhang, Y. Magnetic polaron conduction in the colossal magnetoresistance material Fe1−xCdxCr2S4. Phys. Rev. B 69, 144407 (2004).

    Google Scholar 

  25. Pohlit, M. et al. Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6. Phys. Rev. Lett. 120, 257201 (2018).

    Google Scholar 

  26. Tomioka, Y. et al. Magnetic-field-induced metal-insulator transition in perovskite-type manganese oxides. Phys. B Condens. Matter 237–238, 6–10 (1997).

    Google Scholar 

  27. Yunoki, S. & Moreo, A. Static and dynamical properties of the ferromagnetic Kondo model with direct antiferromagnetic coupling between the localized t2g electrons. Phys. Rev. B 58, 6403–6413 (1998).

    Google Scholar 

  28. Yunoki, S., Hotta, T. & Dagotto, E. Ferromagnetic, a -type, and charge-ordered ce -type states in doped manganites using Jahn-Teller phonons. Phys. Rev. Lett. 84, 3714–3717 (2000).

    Google Scholar 

  29. Alonso, J. L., Fernández, L. A., Guinea, F., Laliena, V. & Martín-Mayor, V. Discontinuous transitions in double-exchange materials. Phys. Rev. B 63, 064416 (2001).

    Google Scholar 

  30. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001).

    Google Scholar 

  31. Burgy, J., Mayr, M., Martin-Mayor, V., Moreo, A. & Dagotto, E. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87, 277202 (2001).

    Google Scholar 

  32. Motome, Y., Furukawa, N. & Nagaosa, N. Competing orders and disorder-induced insulator to metal transition in manganites. Phys. Rev. Lett. 91, 167204 (2003).

    Google Scholar 

  33. Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and stress fields in phase-separation theories for cmr manganites. Phys. Rev. Lett. 92, 097202 (2004).

    Google Scholar 

  34. Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006).

    Google Scholar 

  35. Şen, C., Alvarez, G. & Dagotto, E. Competing ferromagnetic and charge-ordered states in models for manganites: the origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).

    Google Scholar 

  36. Rosa, P. et al. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator. npj Quantum Mater. 5, 1–6 (2020).

    Google Scholar 

  37. Balguri, S. et al. Two types of colossal magnetoresistance with distinct mechanisms in Eu5In2As6. Phys. Rev. B 111, 115114 (2025).

    Google Scholar 

  38. Yin, J. et al. Large negative magnetoresistance in the antiferromagnetic rare-earth dichalcogenide EuTe2. Phys. Rev. Mater. 4, 013405 (2020).

    Google Scholar 

  39. Yang, H. et al. Colossal angular magnetoresistance in the antiferromagnetic semiconductor EuTe2. Phys. Rev. B 104, 214419 (2021).

    Google Scholar 

  40. Dong, Q. et al. Simultaneous colossal magnetoresistance and angular magnetoresistance in the antiferromagnetic semiconductor EuSe2. Phys. Rev. B 112, L140405 (2025).

    Google Scholar 

  41. Ni, Y. et al. Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn3Si2Te6. Phys. Rev. B 103, L161105 (2021).

    Google Scholar 

  42. Seo, J. et al. Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors. Nature 599, 576–581 (2021).

    Google Scholar 

  43. Zhang, Y. et al. Control of chiral orbital currents in a colossal magnetoresistance material. Nature 611, 467–472 (2022).

    Google Scholar 

  44. Şen, C., Alvarez, G., Aliaga, H. & Dagotto, E. Colossal magnetoresistance observed in Monte Carlo simulations of the one- and two-orbital models for manganites. Phys. Rev. B 73, 224441 (2006).

    Google Scholar 

  45. May, A. F. et al. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 95, 174440 (2017).

    Google Scholar 

  46. Zhang, Y. et al. Impact of thermal effects on the current-tunable electrical transport in the ferrimagnetic semiconductor Mn3Si2Te6. Phys. Rev. B 112, L081109 (2025).

    Google Scholar 

  47. Fang, J. et al. Electrothermal manipulation of current-induced phase transitions in ferrimagnetic Mn3Si2Te6. Phys. Rev. Lett. 134, 256302 (2025).

    Google Scholar 

  48. Ye, F. et al. Magnetic structure and spin fluctuations in the colossal magnetoresistance ferrimagnet Mn3Si2Te6. Phys. Rev. B 106, L180402 (2022).

    Google Scholar 

  49. Liu, Z., Zhang, S., Fang, Z., Weng, H. & Wu, Q. Combined first-principles and Boltzmann transport theory methodology for studying magnetotransport in magnetic materials. Phys. Rev. Res. 6, 043185 (2024).

    Google Scholar 

  50. Zhang, Y. et al. Current-sensitive Hall effect in a chiral-orbital-current state. Nat. Commun. 15, 3579 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.12274436, 11925408, 11921004), the National Key R&D Program of China (Grant No. 2023YFA1607400, 2022YFA1403800), the Science Center of the National Natural Science Foundation of China (Grant No. 12188101), and H.W. acknowledges support from the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

  1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China

    Zhihao Liu, Zhong Fang, Hongming Weng & Quansheng Wu

  2. University of Chinese Academy of Sciences, Beijing, China

    Zhihao Liu, Zhong Fang, Hongming Weng & Quansheng Wu

  3. Songshan Lake Materials Laboratory, Dongguan, Guangdong, China

    Zhong Fang & Hongming Weng

Authors
  1. Zhihao Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhong Fang
    View author publications

    Search author on:PubMed Google Scholar

  3. Hongming Weng
    View author publications

    Search author on:PubMed Google Scholar

  4. Quansheng Wu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Q.S.W. and Z.H.L. conceived and supervised the project. Z.H.L. performed the simulations and analysis. F.Z. and H.M.W. provided the theoretical support and advice. Z.H.L. wrote the manuscript. All authors contributed to the manuscript revisions.

Corresponding author

Correspondence to Quansheng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fang, Z., Weng, H. et al. Colossal magnetoresistance and unusual resistivity behaviors in magnetic semiconductors: Mn3Si2Te6 as a case study. npj Comput Mater (2026). https://doi.org/10.1038/s41524-026-01963-9

Download citation

  • Received: 24 July 2025

  • Accepted: 11 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41524-026-01963-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing