Table 6 Comparison of data preprocessing performance

From: Machine learning methods for predicting residual strength in corroded oil and gas steel pipes

Number

Source

Year

Model

Performance

â‘ 

61

2023

BRANN

R2 = 0.9962;

MSE = 0.4743

â‘¡

61

2023

KPCA-BRANN

R2 = 0.9966;

MSE = 0.6365

â‘¢

61

2023

LLE-BRANN

R2 = 0.9993;

MSE = 0.0886

â‘£

35

2022

Neural network

R2 = 0.9551;

MAPE = 7.070%;

RMSE = 1.6060

⑤

35

2022

PCA + Neural network

R2 = 0.9843;

MAPE = 4.596%;

RMSE = 0.9510

â‘¥

59

2021

ANFIS without PCA

R2 = 0.9516;

MAE = 1.7423;

RMSE = 2.3513

⑦

59

2021

ANFIS-PCA

R2 = 0.9919;

MAE = 0.6917;

RMSE = 0.9883