Table 1 Correspondence between states in the Fock occupation notation \({\left\vert ...\right\rangle }_{F}\) and the logical qubit notation \({\left\vert ...\right\rangle }_{q}\)

From: Solving the Bernstein-Vazirani problem using Majorana-based topological quantum algorithms

Fock state

N = 2

\({\left\vert 001\right\rangle }_{F}\)

\({\left\vert 010\right\rangle }_{F}\)

\({\left\vert 100\right\rangle }_{F}\)

\({\left\vert 111\right\rangle }_{F}\)

N = 3

\({\left\vert 0110\right\rangle }_{F}\)

\({\left\vert 1010\right\rangle }_{F}\)

\({\left\vert 1100\right\rangle }_{F}\)

\({\left\vert 0000\right\rangle }_{F}\)

\({\left\vert 0011\right\rangle }_{F}\)

\({\left\vert 1001\right\rangle }_{F}\)

\({\left\vert 1111\right\rangle }_{F}\)

\({\left\vert 0101\right\rangle }_{F}\)

Qubit state

 

\({\left\vert 00\right\rangle }_{q}\)

\({\left\vert 01\right\rangle }_{q}\)

\({\left\vert 10\right\rangle }_{q}\)

\({\left\vert 11\right\rangle }_{q}\)

 

\({\left\vert 011\right\rangle }_{q}\)

\({\left\vert 010\right\rangle }_{q}\)

\({\left\vert 001\right\rangle }_{q}\)

\({\left\vert 000\right\rangle }_{q}\)

\({\left\vert 111\right\rangle }_{q}\)

\({\left\vert 101\right\rangle }_{q}\)

\({\left\vert 110\right\rangle }_{q}\)

\({\left\vert 100\right\rangle }_{q}\)