Table 1 Correspondence between states in the Fock occupation notation \({\left\vert ...\right\rangle }_{F}\) and the logical qubit notation \({\left\vert ...\right\rangle }_{q}\)
From: Solving the Bernstein-Vazirani problem using Majorana-based topological quantum algorithms
Fock state | N = 2 | \({\left\vert 001\right\rangle }_{F}\) | \({\left\vert 010\right\rangle }_{F}\) | \({\left\vert 100\right\rangle }_{F}\) | \({\left\vert 111\right\rangle }_{F}\) | N = 3 | \({\left\vert 0110\right\rangle }_{F}\) | \({\left\vert 1010\right\rangle }_{F}\) | \({\left\vert 1100\right\rangle }_{F}\) | \({\left\vert 0000\right\rangle }_{F}\) | \({\left\vert 0011\right\rangle }_{F}\) | \({\left\vert 1001\right\rangle }_{F}\) | \({\left\vert 1111\right\rangle }_{F}\) | \({\left\vert 0101\right\rangle }_{F}\) |
Qubit state | \({\left\vert 00\right\rangle }_{q}\) | \({\left\vert 01\right\rangle }_{q}\) | \({\left\vert 10\right\rangle }_{q}\) | \({\left\vert 11\right\rangle }_{q}\) | \({\left\vert 011\right\rangle }_{q}\) | \({\left\vert 010\right\rangle }_{q}\) | \({\left\vert 001\right\rangle }_{q}\) | \({\left\vert 000\right\rangle }_{q}\) | \({\left\vert 111\right\rangle }_{q}\) | \({\left\vert 101\right\rangle }_{q}\) | \({\left\vert 110\right\rangle }_{q}\) | \({\left\vert 100\right\rangle }_{q}\) |