Abstract
Absorption and emission, fundamental interactions between light and matter, enable the regeneration of a quantum state of light via matter through concatenated quantum state transfer based on the principle of quantum teleportation. This transfer is enabled by electron spin-orbit entanglement and electron-nuclear spin entanglement inherent within the material. Here, we demonstrate that a photon quantum state imprinted in polarization is transferred to another photon emitted from a nitrogen vacancy (NV) center. This transfer is heralded by the result of the Bell state measurement between the electron and nitrogen nuclear spins. We show that the minimum number of incident photons needed to achieve transfer is, on average, only 0.1 photons, enabling quantum teleportation over 10 km. This demonstration paves the way for a quantum repeater that is robust against phase and intensity errors, unlike the conventional photon interference scheme, thereby facilitating practical quantum networks.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon request.
Code availability
The code used for generating data of this study is available from the corresponding author upon reasonable request.
References
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).
Lago-Rivera, D., Rakonjac, J. V., Grandi, S. & Riedmatten, H. D. Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Nat. Commun. 14, 1889 (2023).
van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).
Zhou, Y. et al. Long-lived quantum memory enabling atom-photon entanglement over 101 km of telecom fiber. PRX Quantum 5, 020307 (2024).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
Stolk, A. J. et al. Metropolitan-scale heralded entanglement of solid-state qubits. Sci. Adv. 10, eadp6442 (2024).
Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).
Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
Bersin, E. et al. Telecom networking with a diamond quantum memory. PRX Quantum 5, 010303 (2024).
Welte, S. et al. A nondestructive Bell-state measurement on two distant atomic qubits. Nat. Photonics 15, 504–509 (2021).
Knaut, C. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
Rong, X. et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun. 6, 8748 (2015).
Jung, K. et al. Deep learning enhanced individual nuclear-spin detection. npj Quantum Inf. 7, 41 (2021).
Bartling, H. et al. Universal high-fidelity quantum gates for spin qubits in diamond. Phys. Rev. Appl. 23, 034052 (2025).
Kurokawa, H., Yamamoto, M., Sekiguchi, Y. & Kosaka, H. Remote entanglement of superconducting qubits via solid-state spin quantum memories. Phys. Rev. Appl. 18, 064039 (2022).
Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).
Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).
Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).
Delteil, A., Sun, Z., Fält, S. & Imamoğlu, A. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys. Rev. Lett. 118, 177401 (2017).
Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).
Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photonics 10, 507–511 (2016).
Tsurumoto, K., Kuroiwa, R., Kano, H., Sekiguchi, Y. & Kosaka, H. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys. 2, 74 (2019).
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).
Sekiguchi, Y. et al. Geometric entanglement of a photon and spin qubits in diamond. Commun. Phys. 4, 264 (2021).
Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2013).
Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).
Reyes, R. et al. Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field. Appl. Phys. Lett. 120, 194002 (2022).
Kamimaki, A., Wakamatsu, K., Mikata, K., Sekiguchi, Y. & Kosaka, H. Deterministic bell state measurement with a single quantum memory. npj Quantum Inf. 9, 101 (2023).
Bassett, L., Heremans, F., Yale, C., Buckley, B. & Awschalom, D. Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett. 107, 266403 (2011).
Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).
Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned nv centers. PRX Quantum 3, 020359 (2022).
Ito, D. et al. Robust transfer of a quantum state from an absorbed photon into a diamond spin. Opt. Lett. 50, 5073–5076 (2025).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. N. J. Phys. 13, 025025 (2011).
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).
Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).
Vetter, P. J. et al. Zero-and low-field sensing with nitrogen-vacancy centers. Phys. Rev. Appl. 17, 044028 (2022).
Li, Z. et al. Zero-field quantum sensing via precise geometric controls for a spin-1 system. Phys. Rev. Appl. 21, 054011 (2024).
Siyushev, P. et al. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds. N. J. Phys. 11, 113029 (2009).
Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).
Hadden, J. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010).
Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).
Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).
Riedel, D. et al. Efficient photonic integration of diamond color centers and thin-film lithium niobate. ACS Photonics 10, 4236–4243 (2023).
Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).
Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).
Ruf, M., Weaver, M. J., van Dam, S. B. & Hanson, R. Resonant excitation and Purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity. Phys. Rev. Appl. 15, 024049 (2021).
Kaiser, F. et al. Quantum optical frequency up-conversion for polarisation entangled qubits: towards interconnected quantum information devices. Opt. Express 27, 25603–25610 (2019).
Ikuta, R. et al. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network. Nat. Commun. 9, 1997 (2018).
Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).
Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).
Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).
Nakazato, T. et al. Quantum error correction of spin quantum memories in diamond under a zero magnetic field. Commun. Phys. 5, 102 (2022).
Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).
Kosaka, H. et al. Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 100, 096602 (2008).
Sekiguchi, Y. et al. Geometric spin echo under zero field. Nat. Commun. 7, 11668 (2016).
Sekiguchi, Y., Niikura, N., Kuroiwa, R., Kano, H. & Kosaka, H. Optical holonomic single quantum gates with a geometric spin under a zero field. Nat. Photonics 11, 309–314 (2017).
Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).
Ishida, N. et al. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. Opt. Lett. 43, 2380–2383 (2018).
Nagata, K., Kuramitani, K., Sekiguchi, Y. & Kosaka, H. Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 9, 3227 (2018).
Sekiguchi, Y., Komura, Y. & Kosaka, H. Dynamical decoupling of a geometric qubit. Phys. Rev. Appl. 12, 051001 (2019).
Sekiguchi, Y., Matsushita, K., Kawasaki, Y. & Kosaka, H. Optically addressable universal holonomic quantum gates on diamond spins. Nat. Photonics 16, 662–666 (2022).
Acknowledgements
H. Kosaka acknowledges the funding support from Japan Science and Technology Agency (JST) Moonshot R&D grant (JPMJMS2062) and JST CREST grant (JPMJCR1773). H. Kosaka also acknowledges the Ministry of Internal Affairs and Communications (MIC) for funding, research and development for construction of a global quantum cryptography network (JPMI00316) and from Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (20H05661, 20K20441). R.Reyes acknowledges Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows (23KJ0983).
Author information
Authors and Affiliations
Contributions
R.R. designed and performed the experiments. Y.S. also designed the experiments. D.I., T.F. and K.W. also performed the experiments. T.M. and H. Kato contributed to the fabrication of the solid-immersion-lens structure. H. Kosaka supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Reyes, R., Sekiguchi, Y., Ito, D. et al. Quantum teleportation of a photon via absorption and emission for quantum repeater nodes. npj Quantum Inf (2025). https://doi.org/10.1038/s41534-025-01169-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41534-025-01169-9


