Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Quantum teleportation of a photon via absorption and emission for quantum repeater nodes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 December 2025

Quantum teleportation of a photon via absorption and emission for quantum repeater nodes

  • Raustin Reyes1,
  • Yuhei Sekiguchi2,
  • Daisuke Ito1,
  • Taichi Fujiwara1,
  • Kansei Watanabe1,
  • Toshiharu Makino2,3,
  • Hiromitsu Kato2,3 &
  • …
  • Hideo Kosaka1,2 

npj Quantum Information , Article number:  (2025) Cite this article

  • 2267 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Quantum information
  • Qubits
  • Single photons and quantum effects

Abstract

Absorption and emission, fundamental interactions between light and matter, enable the regeneration of a quantum state of light via matter through concatenated quantum state transfer based on the principle of quantum teleportation. This transfer is enabled by electron spin-orbit entanglement and electron-nuclear spin entanglement inherent within the material. Here, we demonstrate that a photon quantum state imprinted in polarization is transferred to another photon emitted from a nitrogen vacancy (NV) center. This transfer is heralded by the result of the Bell state measurement between the electron and nitrogen nuclear spins. We show that the minimum number of incident photons needed to achieve transfer is, on average, only 0.1 photons, enabling quantum teleportation over 10 km. This demonstration paves the way for a quantum repeater that is robust against phase and intensity errors, unlike the conventional photon interference scheme, thereby facilitating practical quantum networks.

Similar content being viewed by others

Deterministic photon source of genuine three-qubit entanglement

Article Open access 05 September 2024

Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node

Article Open access 02 November 2024

Nonlinear down-conversion in a single quantum dot

Article Open access 16 March 2022

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

The code used for generating data of this study is available from the corresponding author upon reasonable request.

References

  1. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  2. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Google Scholar 

  3. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Google Scholar 

  4. Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Google Scholar 

  5. Lago-Rivera, D., Rakonjac, J. V., Grandi, S. & Riedmatten, H. D. Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Nat. Commun. 14, 1889 (2023).

    Google Scholar 

  6. van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

    Google Scholar 

  7. Zhou, Y. et al. Long-lived quantum memory enabling atom-photon entanglement over 101 km of telecom fiber. PRX Quantum 5, 020307 (2024).

    Google Scholar 

  8. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Google Scholar 

  9. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Google Scholar 

  10. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Google Scholar 

  11. Stolk, A. J. et al. Metropolitan-scale heralded entanglement of solid-state qubits. Sci. Adv. 10, eadp6442 (2024).

    Google Scholar 

  12. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Google Scholar 

  13. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Google Scholar 

  14. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Google Scholar 

  15. Bersin, E. et al. Telecom networking with a diamond quantum memory. PRX Quantum 5, 010303 (2024).

    Google Scholar 

  16. Welte, S. et al. A nondestructive Bell-state measurement on two distant atomic qubits. Nat. Photonics 15, 504–509 (2021).

    Google Scholar 

  17. Knaut, C. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

    Google Scholar 

  18. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  19. Rong, X. et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun. 6, 8748 (2015).

    Google Scholar 

  20. Jung, K. et al. Deep learning enhanced individual nuclear-spin detection. npj Quantum Inf. 7, 41 (2021).

    Google Scholar 

  21. Bartling, H. et al. Universal high-fidelity quantum gates for spin qubits in diamond. Phys. Rev. Appl. 23, 034052 (2025).

    Google Scholar 

  22. Kurokawa, H., Yamamoto, M., Sekiguchi, Y. & Kosaka, H. Remote entanglement of superconducting qubits via solid-state spin quantum memories. Phys. Rev. Appl. 18, 064039 (2022).

    Google Scholar 

  23. Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

    Google Scholar 

  24. Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Google Scholar 

  25. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Google Scholar 

  26. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Google Scholar 

  27. Delteil, A., Sun, Z., Fält, S. & Imamoğlu, A. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys. Rev. Lett. 118, 177401 (2017).

    Google Scholar 

  28. Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

    Google Scholar 

  29. Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photonics 10, 507–511 (2016).

    Google Scholar 

  30. Tsurumoto, K., Kuroiwa, R., Kano, H., Sekiguchi, Y. & Kosaka, H. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys. 2, 74 (2019).

    Google Scholar 

  31. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Google Scholar 

  32. Sekiguchi, Y. et al. Geometric entanglement of a photon and spin qubits in diamond. Commun. Phys. 4, 264 (2021).

    Google Scholar 

  33. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2013).

    Google Scholar 

  34. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Google Scholar 

  35. Reyes, R. et al. Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field. Appl. Phys. Lett. 120, 194002 (2022).

  36. Kamimaki, A., Wakamatsu, K., Mikata, K., Sekiguchi, Y. & Kosaka, H. Deterministic bell state measurement with a single quantum memory. npj Quantum Inf. 9, 101 (2023).

    Google Scholar 

  37. Bassett, L., Heremans, F., Yale, C., Buckley, B. & Awschalom, D. Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett. 107, 266403 (2011).

    Google Scholar 

  38. Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    Google Scholar 

  39. Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned nv centers. PRX Quantum 3, 020359 (2022).

    Google Scholar 

  40. Ito, D. et al. Robust transfer of a quantum state from an absorbed photon into a diamond spin. Opt. Lett. 50, 5073–5076 (2025).

    Google Scholar 

  41. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Google Scholar 

  42. Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. N. J. Phys. 13, 025025 (2011).

    Google Scholar 

  43. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    Google Scholar 

  44. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Google Scholar 

  45. Vetter, P. J. et al. Zero-and low-field sensing with nitrogen-vacancy centers. Phys. Rev. Appl. 17, 044028 (2022).

    Google Scholar 

  46. Li, Z. et al. Zero-field quantum sensing via precise geometric controls for a spin-1 system. Phys. Rev. Appl. 21, 054011 (2024).

    Google Scholar 

  47. Siyushev, P. et al. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds. N. J. Phys. 11, 113029 (2009).

    Google Scholar 

  48. Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    Google Scholar 

  49. Hadden, J. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010).

  50. Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

  51. Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

    Google Scholar 

  52. Riedel, D. et al. Efficient photonic integration of diamond color centers and thin-film lithium niobate. ACS Photonics 10, 4236–4243 (2023).

    Google Scholar 

  53. Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    Google Scholar 

  54. Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).

    Google Scholar 

  55. Ruf, M., Weaver, M. J., van Dam, S. B. & Hanson, R. Resonant excitation and Purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity. Phys. Rev. Appl. 15, 024049 (2021).

    Google Scholar 

  56. Kaiser, F. et al. Quantum optical frequency up-conversion for polarisation entangled qubits: towards interconnected quantum information devices. Opt. Express 27, 25603–25610 (2019).

    Google Scholar 

  57. Ikuta, R. et al. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network. Nat. Commun. 9, 1997 (2018).

    Google Scholar 

  58. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Google Scholar 

  59. Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    Google Scholar 

  60. Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    Google Scholar 

  61. Nakazato, T. et al. Quantum error correction of spin quantum memories in diamond under a zero magnetic field. Commun. Phys. 5, 102 (2022).

    Google Scholar 

  62. Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).

    Google Scholar 

  63. Kosaka, H. et al. Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 100, 096602 (2008).

    Google Scholar 

  64. Sekiguchi, Y. et al. Geometric spin echo under zero field. Nat. Commun. 7, 11668 (2016).

    Google Scholar 

  65. Sekiguchi, Y., Niikura, N., Kuroiwa, R., Kano, H. & Kosaka, H. Optical holonomic single quantum gates with a geometric spin under a zero field. Nat. Photonics 11, 309–314 (2017).

    Google Scholar 

  66. Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).

    Google Scholar 

  67. Ishida, N. et al. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. Opt. Lett. 43, 2380–2383 (2018).

    Google Scholar 

  68. Nagata, K., Kuramitani, K., Sekiguchi, Y. & Kosaka, H. Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 9, 3227 (2018).

    Google Scholar 

  69. Sekiguchi, Y., Komura, Y. & Kosaka, H. Dynamical decoupling of a geometric qubit. Phys. Rev. Appl. 12, 051001 (2019).

    Google Scholar 

  70. Sekiguchi, Y., Matsushita, K., Kawasaki, Y. & Kosaka, H. Optically addressable universal holonomic quantum gates on diamond spins. Nat. Photonics 16, 662–666 (2022).

    Google Scholar 

Download references

Acknowledgements

H. Kosaka acknowledges the funding support from Japan Science and Technology Agency (JST) Moonshot R&D grant (JPMJMS2062) and JST CREST grant (JPMJCR1773). H. Kosaka also acknowledges the Ministry of Internal Affairs and Communications (MIC) for funding, research and development for construction of a global quantum cryptography network (JPMI00316) and from Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (20H05661, 20K20441). R.Reyes acknowledges Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows (23KJ0983).

Author information

Authors and Affiliations

  1. Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan

    Raustin Reyes, Daisuke Ito, Taichi Fujiwara, Kansei Watanabe & Hideo Kosaka

  2. Quantum Information Research Center, Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan

    Yuhei Sekiguchi, Toshiharu Makino, Hiromitsu Kato & Hideo Kosaka

  3. Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

    Toshiharu Makino & Hiromitsu Kato

Authors
  1. Raustin Reyes
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuhei Sekiguchi
    View author publications

    Search author on:PubMed Google Scholar

  3. Daisuke Ito
    View author publications

    Search author on:PubMed Google Scholar

  4. Taichi Fujiwara
    View author publications

    Search author on:PubMed Google Scholar

  5. Kansei Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  6. Toshiharu Makino
    View author publications

    Search author on:PubMed Google Scholar

  7. Hiromitsu Kato
    View author publications

    Search author on:PubMed Google Scholar

  8. Hideo Kosaka
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.R. designed and performed the experiments. Y.S. also designed the experiments. D.I., T.F. and K.W. also performed the experiments. T.M. and H. Kato contributed to the fabrication of the solid-immersion-lens structure. H. Kosaka supervised the project.

Corresponding author

Correspondence to Hideo Kosaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, R., Sekiguchi, Y., Ito, D. et al. Quantum teleportation of a photon via absorption and emission for quantum repeater nodes. npj Quantum Inf (2025). https://doi.org/10.1038/s41534-025-01169-9

Download citation

  • Received: 30 January 2025

  • Accepted: 12 December 2025

  • Published: 28 December 2025

  • DOI: https://doi.org/10.1038/s41534-025-01169-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing