Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Few-shot estimation of entanglement with Bell measurement assistance
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Few-shot estimation of entanglement with Bell measurement assistance

  • Gong-Chu Li1,2,3,4,
  • Lei Chen1,2,3,
  • Xu-Song Hong1,2,3,4,
  • Si-Qi Zhang1,2,3,
  • Huaqing Xu1,2,3,
  • Yuancheng Liu1,2,3,
  • You Zhou4,5,
  • Geng Chen1,2,3,4,
  • Chuan-Feng Li1,2,3,4 &
  • …
  • Guang-Can Guo1,2,3,4 

npj Quantum Information , Article number:  (2026) Cite this article

  • 1246 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Quantum information
  • Quantum optics

Abstract

Entanglement is fundamental to quantum physics and information processing. In this work, we introduce the Few-Shot Randomized Measurement (FSRM) method, developing an unbiased estimator for mixed-state entanglement from just three experimental shot outcomes. By incorporating the Bell measurement (BM), we supplement the traditional computational-basis measurement to enhance the randomized measurement scheme, which is scalable to n-qubit systems via BMs on qubit pairs. Our approach enables direct estimation of entanglement through random unitary evolution in a photonic system. Compared to the classical shadow method, BM-enhanced FSRM requires no prior knowledge of the local unitaries, offering greater robustness against unitary imperfections. Additionally, we find that utilizing more versatile measurement settings with fewer repeats per setting is more efficient under fixed measurement resources. Our protocol and experimental demonstration represent a significant advancement in the efficient and practical characterization of quantum states.

Similar content being viewed by others

Demonstrating the power of quantum computers, certification of highly entangled measurements and scalable quantum nonlocality

Article Open access 22 July 2021

Entangled state generation via quantum walks with multiple coins

Article Open access 07 May 2021

Time-resolved certification of frequency-bin entanglement over multi-mode channels

Article Open access 23 January 2026

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.Code for the S5 in the Supplementary Note 3 can be find in https://www.scidb.cn/en/detail?dataSetId=b645025cb89f40af9fedbe68925a200c, https://doi.org/10.57760/sciencedb.nbsdc.0021.

Code availability

Code for the S5 in the Supplementary Note 3 can be find in https://www.scidb.cn/en/detail?dataSetId=b645025cb89f40af9fedbe68925a200c.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).

    Google Scholar 

  3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press, 2011).

  4. Guhne, O. & Toth, G. Entanglement detection. Phys. Rep. 474, 1 – 75 (2009).

    Google Scholar 

  5. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Google Scholar 

  6. Chruściński, D. & Sarbicki, G. Entanglement witnesses: construction, analysis and classification. J. Phys. A Math. Theor. 47, 483001 (2014).

    Google Scholar 

  7. Silva, G., Glancy, S. & Vasconcelos, H. M. Investigating bias in maximum-likelihood quantum-state tomography. Phys. Rev. A 95, 022107 (2017).

    Google Scholar 

  8. Bengtsson, I. & Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2017).

  9. Weilenmann, M., Dive, B., Trillo, D., Aguilar, E. A. & Navascués, M. Entanglement detection beyond measuring fidelities. Phys. Rev. Lett. 124, 200502 (2020).

    Google Scholar 

  10. Gühne, O., Mao, Y. & Yu, X.-D. Geometry of faithful entanglement. Phys. Rev. Lett. 126, 140503 (2021).

    Google Scholar 

  11. Hu, X.-M. et al. Optimized detection of high-dimensional entanglement. Phys. Rev. Lett. 127, 220501 (2021).

    Google Scholar 

  12. Liu, P., Liu, Z., Chen, S. & Ma, X. Fundamental limitation on the detectability of entanglement. Phys. Rev. Lett. 129, 230503 (2022).

    Google Scholar 

  13. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Google Scholar 

  14. Plenio, M. B. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

    Google Scholar 

  15. Neven, A. et al. Symmetry-resolved entanglement detection using partial transpose moments. npj Quantum Inf. 7, 1–12 (2021).

    Google Scholar 

  16. Yu, X.-D., Imai, S. & Gühne, O. Optimal entanglement certification from moments of the partial transpose. Phys. Rev. Lett. 127, 060504 (2021).

    Google Scholar 

  17. Gray, J., Banchi, L., Bayat, A. & Bose, S. Machine-learning-assisted many-body entanglement measurement. Phys. Rev. Lett. 121, 150503 (2018).

    Google Scholar 

  18. Zhou, Y., Zeng, P. & Liu, Z. Single-copies estimation of entanglement negativity. Phys. Rev. Lett. 125, 200502 (2020).

    Google Scholar 

  19. Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).

    Google Scholar 

  20. Elben, A. et al. The randomized measurement toolbox. Nat. Rev. Phys. 5, 9–24 (2023).

    Google Scholar 

  21. Cieśliński, P. et al. Analysing quantum systems with randomised measurements. Phys. Rep. 1095, 1–48 (2024).

    Google Scholar 

  22. Vermersch, B., Elben, A., Sieberer, L. M., Yao, N. Y. & Zoller, P. Probing scrambling using statistical correlations between randomized measurements. Phys. Rev. X 9, 021061 (2019).

    Google Scholar 

  23. van Enk, S. J. & Beenakker, C. W. J. Measuring \({\rm{Tr}}{\rho }^{n}\) on single copies of ρ using random measurements. Phys. Rev. Lett. 108, 110503 (2012).

    Google Scholar 

  24. Elben, A., Vermersch, B., Dalmonte, M., Cirac, J. I. & Zoller, P. Rényi entropies from random quenches in atomic hubbard and spin models. Phys. Rev. Lett. 120, 050406 (2018).

    Google Scholar 

  25. Brydges, T. et al. Probing rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Google Scholar 

  26. Garcia, R. J., Zhou, Y. & Jaffe, A. Quantum scrambling with classical shadows. Phys. Rev. Res. 3, 033155 (2021).

    Google Scholar 

  27. Elben, A. et al. Many-body topological invariants from randomized measurements in synthetic quantum matter. Sci. Adv. 6, eaaz3666 (2020).

    Google Scholar 

  28. Rath, A., Branciard, C., Minguzzi, A. & Vermersch, B. Quantum fisher information from randomized measurements. Phys. Rev. Lett. 127, 260501 (2021).

    Google Scholar 

  29. Elben, A., Vermersch, B., Roos, C. F. & Zoller, P. Statistical correlations between locally randomized measurements: a toolbox for probing entanglement in many-body quantum states. Phys. Rev. A 99, 052323 (2019).

    Google Scholar 

  30. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

    Google Scholar 

  31. Zhou, Y. & Liu, Q. Performance analysis of multi-shot shadow estimation. Quantum 7, 1044 (2023).

    Google Scholar 

  32. Helsen, J. & Walter, M. Thrifty shadow estimation: reusing quantum circuits and bounding tails. Phys. Rev. Lett. 131, 240602 (2023).

    Google Scholar 

  33. Liu, Z., Zeng, P., Zhou, Y. & Gu, M. Characterizing correlation within multipartite quantum systems via local randomized measurements. Phys. Rev. A 105, 022407 (2022).

    Google Scholar 

  34. Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).

    Google Scholar 

  35. Kim, T., Fiorentino, M. & Wong, F. N. Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer. Phys. Rev. A 73, 012316 (2006).

    Google Scholar 

  36. Englert, B.-G., Kurtsiefer, C. & Weinfurter, H. Universal unitary gate for single-photon two-qubit states. Phys. Rev. A 63, 032303 (2001).

    Google Scholar 

  37. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).

    Google Scholar 

  38. Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).

    Google Scholar 

  39. Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-not gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).

    Google Scholar 

  40. Luis, A. & Sánchez-Soto, L. L. Complete characterization of arbitrary quantum measurement processes. Phys. Rev. Lett. 83, 3573 (1999).

    Google Scholar 

  41. Ketterer, A., Wyderka, N. & Gühne, O. Characterizing multipartite entanglement with moments of random correlations. Phys. Rev. Lett. 122, 120505 (2019).

    Google Scholar 

  42. Liu, S., He, Q., Huber, M., Gühne, O. & Vitagliano, G. Characterizing entanglement dimensionality from randomized measurements. PRX Quantum 4, 020324 (2023).

    Google Scholar 

  43. Wyderka, N. et al. Complete characterization of quantum correlations by randomized measurements. Phys. Rev. Lett. 131, 090201 (2023).

    Google Scholar 

  44. Seif, A., Cian, Z.-P., Zhou, S., Chen, S. & Jiang, L. Shadow distillation: quantum error mitigation with classical shadows for near-term quantum processors. PRX Quantum 4, 010303 (2023).

    Google Scholar 

  45. Zhou, Y. & Liu, Z. A hybrid framework for estimating nonlinear functions of quantum states. npj Quantum Inf. 10, 62 (2024).

    Google Scholar 

  46. Hu, H.-Y., LaRose, R., You, Y.-Z., Rieffel, E. & Wang, Z. Logical shadow tomography: Efficient estimation of error-mitigated observables. Preprint at https://arxiv.org/abs/2203.07263 (2022).

  47. Peng, X.-J. et al. Experimental hybrid shadow tomography and distillation. Preprint at https://doi.org/10.1103/PhysRevApplied.23.014075 (2024).

  48. Lubasch, M., Joo, J., Moinier, P., Kiffner, M. & Jaksch, D. Variational quantum algorithms for nonlinear problems. Phys. Rev. A 101, 010301 (2020).

    Google Scholar 

  49. Yamamoto, K., Endo, S., Hakoshima, H., Matsuzaki, Y. & Tokunaga, Y. Error-mitigated quantum metrology via virtual purification. Phys. Rev. Lett. 129, 250503 (2022).

    Google Scholar 

  50. Liu, Q., Li, Z., Yuan, X., Zhu, H. & Zhou, Y. Auxiliary-free replica shadow estimation. Preprint at https://arxiv.org/abs/2407.20865 (2024).

  51. Koh, D. E. & Grewal, S. Classical shadows with noise. Quantum 6, 776 (2022).

    Google Scholar 

  52. Chen, S., Yu, W., Zeng, P. & Flammia, S. T. Robust shadow estimation. PRX Quantum 2, 030348 (2021).

    Google Scholar 

  53. Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

    Google Scholar 

Download references

Acknowledgements

G.C., C.F.L. et.al. other authors claim support from the National Natural Science Foundation of China (Grant Nos.~12350006, 92576202), Quantum Science and Technology-National Science and Technology Major Project (Nos. 2021ZD0301200), and USTC Research Funds of the Double First-Class Initiative (Grant No.~YD2030002026). Y.Z. acknowledges the support from the National Natural Science Foundation of China (NSFC) Grant No.~12205048 and 12575012, the Quantum Science and Technology-National Science and Technology Major Project Grant Nos.~2024ZD0301900 and 2021ZD0302000, the Shanghai QiYuan Innovation Foundation, the Shanghai Municipal Commission of Science and Technology with Grant No.~25511103200, the Shanghai Science and Technology Innovation Action Plan Grant No.~24LZ1400200, the Shanghai Pilot Program for Basic Research - Fudan University 21TQ1400100 (25TQ003), and the CCF-Quantum CTek Superconducting Quantum Computing CCF-QC2025006.

Author information

Authors and Affiliations

  1. Laboratory of Quantum Information, University of Science and Technology of China, Hefei, China

    Gong-Chu Li, Lei Chen, Xu-Song Hong, Si-Qi Zhang, Huaqing Xu, Yuancheng Liu, Geng Chen, Chuan-Feng Li & Guang-Can Guo

  2. Anhui Province Key Laboratory of Quantum Network, Hefei, Anhui, China

    Gong-Chu Li, Lei Chen, Xu-Song Hong, Si-Qi Zhang, Huaqing Xu, Yuancheng Liu, Geng Chen, Chuan-Feng Li & Guang-Can Guo

  3. CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, China

    Gong-Chu Li, Lei Chen, Xu-Song Hong, Si-Qi Zhang, Huaqing Xu, Yuancheng Liu, Geng Chen, Chuan-Feng Li & Guang-Can Guo

  4. Hefei National Laboratory, Hefei, China

    Gong-Chu Li, Xu-Song Hong, You Zhou, Geng Chen, Chuan-Feng Li & Guang-Can Guo

  5. Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education), Fudan University, Shanghai, China

    You Zhou

Authors
  1. Gong-Chu Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Lei Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Xu-Song Hong
    View author publications

    Search author on:PubMed Google Scholar

  4. Si-Qi Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Huaqing Xu
    View author publications

    Search author on:PubMed Google Scholar

  6. Yuancheng Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. You Zhou
    View author publications

    Search author on:PubMed Google Scholar

  8. Geng Chen
    View author publications

    Search author on:PubMed Google Scholar

  9. Chuan-Feng Li
    View author publications

    Search author on:PubMed Google Scholar

  10. Guang-Can Guo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Theory Development: G.C.L. and Y.Z.. Experiment: G.C.L. Writing: G.C.L., Z.Y., G.C., L.C., X.S.H., S.Q.Z., H.X., and Y.L. Supervision: Y.Z., G.C., C.F.L., and G.C.G.

Corresponding authors

Correspondence to You Zhou, Geng Chen or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GC., Chen, L., Hong, XS. et al. Few-shot estimation of entanglement with Bell measurement assistance. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-025-01172-0

Download citation

  • Received: 26 May 2025

  • Accepted: 17 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41534-025-01172-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing