Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Experimental demonstration of quantum continual learning with superconducting qubits
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 January 2026

Experimental demonstration of quantum continual learning with superconducting qubits

  • Chuanyu Zhang1 na1,
  • Zhide Lu2,3 na1,
  • Liangtian Zhao4 na1,
  • Shibo Xu1,
  • Weikang Li2,5,
  • Ke Wang1,
  • Jiachen Chen1,
  • Yaozu Wu1,
  • Feitong Jin1,
  • Xuhao Zhu1,
  • Yu Gao1,
  • Ziqi Tan1,
  • Zhengyi Cui1,
  • Aosai Zhang1,
  • Ning Wang1,
  • Yiren Zou1,
  • Tingting Li1,
  • Fanhao Shen1,
  • Jiarun Zhong1,
  • Zehang Bao1,
  • Zitian Zhu1,
  • Zixuan Song6,
  • Jinfeng Deng1,
  • Hang Dong1,
  • Pengfei Zhang1,6,
  • Wenjie Jiang2,
  • Zheng-Zhi Sun2,
  • Pei-Xin Shen7,
  • Hekang Li6,
  • Qiujiang Guo1,6,8,
  • Zhen Wang1,8,
  • Jie Hao4,
  • H. Wang1,8,
  • Dong-Ling Deng2,3,8 &
  • …
  • Chao Song1,8 

npj Quantum Information , Article number:  (2026) Cite this article

  • 1611 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing
  • Physics

Abstract

Quantum computers may outperform classical computers on machine learning tasks. Yet, quantum learning systems may suffer from catastrophic forgetting, which is widely believed to be an obstacle to achieving continual learning. Here, we report an experimental demonstration of quantum continual learning on a superconducting processor. In particular, we sequentially train a quantum classifier with three tasks, two about identifying real-life images and one on classifying quantum states, and demonstrate its catastrophic forgetting. To overcome this dilemma, we exploit the elastic weight consolidation strategy and show that the quantum classifier can incrementally retain knowledge across three tasks with an average accuracy exceeding 92.3%. Additionally, for sequential tasks involving quantum-engineered data, we demonstrate that the quantum classifier outperforms a classical classifier with a comparable number of parameters. Our results establish a viable strategy for empowering quantum learning systems with adaptability to sequential tasks.

Similar content being viewed by others

Experimental quantum adversarial learning with programmable superconducting qubits

Article 28 November 2022

Experimental quantum end-to-end learning on a superconducting processor

Article Open access 01 March 2023

Entanglement-induced provable and robust quantum learning advantages

Article Open access 29 July 2025

Data availability

All data and codes needed to evaluate the conclusions in the paper are archived in Zenodo: https://doi.org/10.5281/zenodo.17669105.

Code availability

All codes needed to evaluate the conclusions in the paper are archived in Zenodo: https://doi.org/10.5281/zenodo.17669105.

References

  1. Wang, L., Zhang, X., Su, H. & Zhu, J. A Comprehensive Survey of Continual Learning: Theory, Method and Application. IEEE Trans. Pattern Anal. Mach. Intell. 46, 5362 (2024).

    Google Scholar 

  2. Ditzler, G., Roveri, M., Alippi, C. & Polikar, R. Learning in Nonstationary Environments: A Survey. IEEE Comput. Intell. Mag. 10, 12 (2015).

    Google Scholar 

  3. Chen, Z. & Liu, B. Lifelong Machine Learning, 2nd ed. (Springer Nature, Switzerland, 2022).

  4. McCloskey, M. and Cohen, N. J. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. Psychology of Learning and Motivation, Vol. 24, edited by Bower, G. H. (Academic Press, 1989) pp. 109–165.

  5. Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks, arXiv:1312.6211 (2015).

  6. Wang, L. et al. Incorporating neuro-inspired adaptability for continual learning in artificial intelligence. Nat. Mach. Intell. 5, 1356 (2023).

    Google Scholar 

  7. van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat. Mach. Intell. 4, 1185 (2022).

    Google Scholar 

  8. Zeng, G., Chen, Y., Cui, B. & Yu, S. Continual learning of context-dependent processing in neural networks. Nat. Mach. Intell. 1, 364 (2019).

    Google Scholar 

  9. Perkonigg, M. et al. Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging. Nat. Commun. 12, 5678 (2021).

    Google Scholar 

  10. Soltoggio, A. et al. A collective AI via lifelong learning and sharing at the edge. Nat. Mach. Intell. 6, 251 (2024).

    Google Scholar 

  11. Lee, C. S. & Lee, A. Y. Clinical applications of continual learning machine learning. Lancet Digit. Health 2, e279 (2020).

    Google Scholar 

  12. Shaheen, K., Hanif, M. A., Hasan, O. & Shafique, M. Continual Learning for Real-World Autonomous Systems: Algorithms, Challenges and Frameworks. J. Intell. Rob. Syst. 105, 9 (2022).

    Google Scholar 

  13. Philps, D., Weyde, T., d’Avila Garcez, A. & Batchelor, R. Continual Learning Augmented Investment Decisions. arXiv:1812.02340 (2019).

  14. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).

    Google Scholar 

  15. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460 (2020).

    Google Scholar 

  16. Wu, Y. et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett. 127, 180501 (2021).

    Google Scholar 

  17. Google Quantum AI Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676 (2023).

    Google Scholar 

  18. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58 (2024).

    Google Scholar 

  19. Paetznick, A. et al. Demonstration of logical qubits and repeated error correction with better-than-physical error rates. arXiv:2404.02280 (2024).

  20. Google Quantum AI and Collaborators Quantum error correction below the surface code threshold. Nature 638, 920 (2025).

    Google Scholar 

  21. Biamonte, J. et al. Quantum machine learning. Nature 549, 195 (2017).

    Google Scholar 

  22. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).

    Google Scholar 

  23. Das Sarma, S., Deng, D.-L. & Duan, L.-M. Machine learning meets quantum physics. Phys. Today 72, 48 (2019).

    Google Scholar 

  24. Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2, 567 (2022).

    Google Scholar 

  25. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103, 150502 (2009).

    Google Scholar 

  26. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631 (2014).

    Google Scholar 

  27. Lloyd, S. & Weedbrook, C. Quantum Generative Adversarial Learning. Phys. Rev. Lett. 121, 040502 (2018).

    Google Scholar 

  28. Hu, L. et al. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv. 5, eaav2761 (2019).

    Google Scholar 

  29. Gao, X., Zhang, Z.-Y. & Duan, L.-M. A quantum machine learning algorithm based on generative models. Sci. Adv. 4, eaat9004 (2018).

    Google Scholar 

  30. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013 (2021).

    Google Scholar 

  31. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  32. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Google Scholar 

  33. Jiang, W., Lu, Z. & Deng, D.-L. Quantum Continual Learning Overcoming Catastrophic Forgetting. Chin. Phys. Lett. 39, 50303 (2022).

    Google Scholar 

  34. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114, 3521 (2017).

    Google Scholar 

  35. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms arXiv:1708.07747 (2017).

  36. Clark, K. et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digital Imaging 26, 1045 (2013).

    Google Scholar 

  37. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).

    Google Scholar 

  38. Knoblauch, J., Husain, H. & Diethe, T. Optimal Continual Learning has Perfect Memory and is NP-hard. in Proc. 37th Int. Conf. Mach. Learn. (PMLR, 2020) pp. 5327–5337.

  39. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019).

    Google Scholar 

  40. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Google Scholar 

  41. Jerbi, S. et al. Quantum machine learning beyond kernel methods. Nat. Commun. 14, 517 (2023).

    Google Scholar 

  42. Du, Y., Hsieh, M.-H., Liu, T. & Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2, 033125 (2020).

    Google Scholar 

  43. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403 (2021).

    Google Scholar 

  44. Farajtabar, M., Azizan, N., Mott, A. & Li, A. Orthogonal Gradient Descent for Continual Learning. in Proc. Twenty Third Int. Conf. Artif. Intell. Stat. (PMLR, 2020) pp. 3762–3773.

  45. Mallya, A., Davis, D. & Lazebnik, S. Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights in Proceedings of the European Conference on Computer Vision (ECCV) (2018) pp. 67–82.

  46. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802 (1982).

    Google Scholar 

  47. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    Google Scholar 

  48. Isele, D. & Cosgun, A. Selective Experience Replay for Lifelong Learning. Proc. AAAI Conf. Artif. Intell. 32, 1 (2018).

    Google Scholar 

  49. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. & Wayne, G. Experience Replay for Continual Learning, in Adv. Neural Inf. Process. Syst., Vol. 32 (Curran Associates, Inc., 2019).

  50. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum Random Access Memory. Phys. Rev. Lett. 100, 160501 (2008).

    Google Scholar 

  51. Schreiber, F. J., Eisert, J. & Meyer, J. J. Classical Surrogates for Quantum Learning Models. Phys. Rev. Lett. 131, 100803 (2023).

    Google Scholar 

  52. Du, Y., Hsieh, M.-H. & Tao, D. Efficient learning for linear properties of bounded-gate quantum circuits. Nat Commun 16, 3790 (2025).

    Google Scholar 

  53. Temme, K., Sergey, B. & Gambetta, J. M. Error Mitigation for Short-Depth Quantum Circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Google Scholar 

  54. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).

    Google Scholar 

  55. Ragone, M. et al. A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits. Nat. Commun. 15, 7172 (2024).

    Google Scholar 

  56. García-Martín, D., Larocca, & Cerezo, M. Quantum neural networks form Gaussian processes. Nat. Phys. 21, 1153-1159 (2025).

  57. Larocca, M. et al. Barren plateaus in variational quantum computing. Nat. Rev. Phys. 7, 174 (2025).

    Google Scholar 

  58. Smacchia, P. et al. Statistical mechanics of the cluster Ising model. Phys. Rev. A 84, 022304 (2011).

    Google Scholar 

  59. Ren, W. et al. Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Comput. Sci. 2, 711 (2022).

    Google Scholar 

  60. Li, J., Yang, X., Peng, X. & Sun, C.-P. Hybrid Quantum-Classical Approach to Quantum Optimal Control. Phys. Rev. Lett. 118, 150503 (2017).

    Google Scholar 

  61. Dozat, T. Incorporating Nesterov Momentum into Adam. in Proc. 13th Int. Conf. Learn. Represent. (2016).

Download references

Acknowledgements

We thank J. Eisert, M. Hafezi, D. Yuan, and S. Jiang for helpful discussions. The device was fabricated at the Micro-Nano Fabrication Center of Zhejiang University. We acknowledge support from the Quantum Science and Technology-National Science and Technology Major Project (Grant Nos. 2021ZD0300200 and 2021ZD0302203), the National Natural Science Foundation of China (Grant Nos. 12174342, 92365301, 12274367, 12322414, 12274368, 12075128, and T2225008), the National Key R&D Program of China (Grant No. 2023YFB4502600), and the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LDQ23A040001, LR24A040002). Z.L., W.L., W.J., Z.-Z.S., and D.-L.D. are supported in addition by Tsinghua University Dushi Program, and the Shanghai Qi Zhi Institute Innovation Program (Grant No. SQZ202318). C.S. is supported by the Xiaomi Young Scholars Program. P.-X.S. acknowledges support from the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101180589 (SymPhysAI), the National Science Centre (Poland) OPUS Grant No. 2021/41/B/ST3/04475, and the Foundation for Polish Science project MagTop (No. FENG.02.01-IP.05-0028/23) co-financed by the European Union from the funds of Priority 2 of the European Funds for a Smart Economy Program 2021–2027 (FENG). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Author notes
  1. These authors contributed equally: Chuanyu Zhang, Zhide Lu, Liangtian Zhao.

Authors and Affiliations

  1. Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, China

    Chuanyu Zhang, Shibo Xu, Ke Wang, Jiachen Chen, Yaozu Wu, Feitong Jin, Xuhao Zhu, Yu Gao, Ziqi Tan, Zhengyi Cui, Aosai Zhang, Ning Wang, Yiren Zou, Tingting Li, Fanhao Shen, Jiarun Zhong, Zehang Bao, Zitian Zhu, Jinfeng Deng, Hang Dong, Pengfei Zhang, Qiujiang Guo, Zhen Wang, H. Wang & Chao Song

  2. Center for Quantum Information, IIIS, Tsinghua University, Beijing, China

    Zhide Lu, Weikang Li, Wenjie Jiang, Zheng-Zhi Sun & Dong-Ling Deng

  3. Shanghai Qi Zhi Institute, Shanghai, China

    Zhide Lu & Dong-Ling Deng

  4. Institute of Automation, Chinese Academy of Sciences, Beijing, China

    Liangtian Zhao & Jie Hao

  5. Instituut-Lorentz, Universiteit Leiden, Leiden, RA, The Netherlands

    Weikang Li

  6. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China

    Zixuan Song, Pengfei Zhang, Hekang Li & Qiujiang Guo

  7. International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

    Pei-Xin Shen

  8. Hefei National Laboratory, Hefei, China

    Qiujiang Guo, Zhen Wang, H. Wang, Dong-Ling Deng & Chao Song

Authors
  1. Chuanyu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhide Lu
    View author publications

    Search author on:PubMed Google Scholar

  3. Liangtian Zhao
    View author publications

    Search author on:PubMed Google Scholar

  4. Shibo Xu
    View author publications

    Search author on:PubMed Google Scholar

  5. Weikang Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Ke Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jiachen Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Yaozu Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Feitong Jin
    View author publications

    Search author on:PubMed Google Scholar

  10. Xuhao Zhu
    View author publications

    Search author on:PubMed Google Scholar

  11. Yu Gao
    View author publications

    Search author on:PubMed Google Scholar

  12. Ziqi Tan
    View author publications

    Search author on:PubMed Google Scholar

  13. Zhengyi Cui
    View author publications

    Search author on:PubMed Google Scholar

  14. Aosai Zhang
    View author publications

    Search author on:PubMed Google Scholar

  15. Ning Wang
    View author publications

    Search author on:PubMed Google Scholar

  16. Yiren Zou
    View author publications

    Search author on:PubMed Google Scholar

  17. Tingting Li
    View author publications

    Search author on:PubMed Google Scholar

  18. Fanhao Shen
    View author publications

    Search author on:PubMed Google Scholar

  19. Jiarun Zhong
    View author publications

    Search author on:PubMed Google Scholar

  20. Zehang Bao
    View author publications

    Search author on:PubMed Google Scholar

  21. Zitian Zhu
    View author publications

    Search author on:PubMed Google Scholar

  22. Zixuan Song
    View author publications

    Search author on:PubMed Google Scholar

  23. Jinfeng Deng
    View author publications

    Search author on:PubMed Google Scholar

  24. Hang Dong
    View author publications

    Search author on:PubMed Google Scholar

  25. Pengfei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  26. Wenjie Jiang
    View author publications

    Search author on:PubMed Google Scholar

  27. Zheng-Zhi Sun
    View author publications

    Search author on:PubMed Google Scholar

  28. Pei-Xin Shen
    View author publications

    Search author on:PubMed Google Scholar

  29. Hekang Li
    View author publications

    Search author on:PubMed Google Scholar

  30. Qiujiang Guo
    View author publications

    Search author on:PubMed Google Scholar

  31. Zhen Wang
    View author publications

    Search author on:PubMed Google Scholar

  32. Jie Hao
    View author publications

    Search author on:PubMed Google Scholar

  33. H. Wang
    View author publications

    Search author on:PubMed Google Scholar

  34. Dong-Ling Deng
    View author publications

    Search author on:PubMed Google Scholar

  35. Chao Song
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.Z. carried out the experiments and analyzed the data with the assistance of S.X., K.W., J.C., Y.W., F.J., X.Z., Y.G., Z.T., Z.C., A.Z., N.W., Y.Z., T.L., F.S., J.Z., Z.B., Z.Z., Z.S., J.D., H.D., P.Z., H.L., Q.G., Z.W.; C.S. and H.W. directed the experiments; Z.L. formalized the theoretical framework and performed the numerical simulations under the supervision of D.-L.D.; W.L., W.J., Z.-Z.S. and P.-X.S. provided theoretical support; J.C. and X.Z. designed the device; H.L. fabricated the device, supervised by H.W.; L.Z. and J.H. provided further experimental support; C.Z., Z.L., J.H., H.W., D.-L.D., and C.S. wrote the manuscript with feedback from all authors.

Corresponding authors

Correspondence to Jie Hao, Dong-Ling Deng or Chao Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, Z., Zhao, L. et al. Experimental demonstration of quantum continual learning with superconducting qubits. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-025-01174-y

Download citation

  • Received: 14 August 2025

  • Accepted: 18 December 2025

  • Published: 06 January 2026

  • DOI: https://doi.org/10.1038/s41534-025-01174-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Quantum enhanced machine learning

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics