Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Time-resolved certification of frequency-bin entanglement over multi-mode channels
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Time-resolved certification of frequency-bin entanglement over multi-mode channels

  • Stéphane Vinet  ORCID: orcid.org/0000-0002-2522-31931,
  • Marco Clementi  ORCID: orcid.org/0000-0003-4034-43372,
  • Marcello Bacchi  ORCID: orcid.org/0009-0003-8663-67542,
  • Yujie Zhang  ORCID: orcid.org/0000-0002-7858-74761,
  • Massimo Giacomin  ORCID: orcid.org/0009-0001-1966-05493,
  • Luke Neal  ORCID: orcid.org/0000-0002-5766-14621,
  • Paolo Villoresi  ORCID: orcid.org/0000-0002-7977-015X3,
  • Matteo Galli2,
  • Daniele Bajoni  ORCID: orcid.org/0000-0001-6506-84854 &
  • …
  • Thomas Jennewein1,5 

npj Quantum Information , Article number:  (2026) Cite this article

  • 681 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Optics and photonics
  • Physics

Abstract

Frequency-bin entangled photons can be efficiently produced on-chip which offers a scalable, robust and low-footprint platform for quantum communication, particularly well-suited for resource-constrained settings such as mobile or satellite-based systems. However, analyzing such entangled states typically requires active and lossy components, limiting scalability and multi-mode compatibility. We demonstrate a novel technique for processing frequency-encoded photons using linear interferometry and time-resolved detection. Our approach is fully passive and compatible with spatially multi-mode light, making it suitable for free-space and satellite-to-ground applications. As a proof-of-concept, we utilize frequency-bin entangled photons generated from a high-brightness multi-resonator source integrated on-chip to show the ability to perform arbitrary projective measurements over both single- and multi-mode channels. We report the first measurement of the joint temporal intensity between frequency-bin entangled photons, which allows us to certify entanglement by violating the Clauser-Horne-Shimony-Holt (CHSH) inequality, with a measured value of ∣S∣ = 2.32 ± 0.05 over multi-mode fiber. By combining time-resolved detection with energy-correlation measurements, we perform full quantum state tomography, yielding a state fidelity of up to 91%. We further assess our ability to produce non-classical states via a violation of time-energy entropic uncertainty relations and investigate the feasibility of a quantum key distribution protocol. Our work establishes a resource-efficient and scalable approach toward the deployment of robust frequency-bin entanglement over free-space and satellite-based links.

Similar content being viewed by others

Quantum key distribution implemented with d-level time-bin entangled photons

Article Open access 02 January 2025

High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb

Article Open access 28 September 2023

High-performance quantum entanglement generation via cascaded second-order nonlinear processes

Article Open access 05 August 2021

Data availability

The analysis code is provided in ref. 61. The data sets used and analyzed in the current study are available from the corresponding author on reasonable request.

References

  1. Olislager, L. et al. Frequency-bin entangled photons. Phys. Rev. A 82, 013804 (2010).

    Google Scholar 

  2. Lu, H.-H., Liscidini, M., Gaeta, A. L., Weiner, A. M. & Lukens, J. M. Frequency-bin photonic quantum information. Optica 10, 1655–1671 (2023).

    Google Scholar 

  3. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Google Scholar 

  4. Clementi, M. et al. Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176 (2023).

    Google Scholar 

  5. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Google Scholar 

  6. Borghi, M. et al. Reconfigurable silicon photonic chip for the generation of frequency-bin-entangled qudits. Phys. Rev. Appl. 19, 064026 (2023).

    Google Scholar 

  7. Vinet, S., Wu, W., Zhang, Y. & Jennewein, T. Feasibility study of frequency-encoded photonic qubits over a free-space channel. Opt. Express 33, 40437–40449 (2025).

    Google Scholar 

  8. HYPER entanglement in SPACE (hyperspace) (2025). https://cordis.europa.eu/project/id/101070168. Grant-ID:101070168.

  9. Kobayashi, T. et al. Frequency-domain Hong-Ou-Mandel interference. Nat. Photonics 10, 441–444 (2016).

    Google Scholar 

  10. Serino, L., Eigner, C., Brecht, B. & Silberhorn, C. Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate. Opt. Express 33, 5577–5586 (2025).

    Google Scholar 

  11. Serino, L. et al. Complementarity-based complementarity: The choice of mutually unbiased observables shapes quantum uncertainty relations. Phys. Rev. Res. 7, 033152 (2025).

    Google Scholar 

  12. Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017).

    Google Scholar 

  13. Lu, H.-H. et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018).

    Google Scholar 

  14. Lu, H.-H. et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements. Nat. Commun. 13, 4338 (2022).

    Google Scholar 

  15. Zhao, T.-M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014).

    Google Scholar 

  16. Halder, M. et al. Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007).

    Google Scholar 

  17. Cui, C., Seshadreesan, K. P., Guha, S. & Fan, L. High-dimensional frequency-encoded quantum information processing with passive photonics and time-resolving detection. Phys. Rev. Lett. 124, 190502 (2020).

    Google Scholar 

  18. Guo, X., Mei, Y. & Du, S. Testing the bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica 4, 388–392 (2017).

    Google Scholar 

  19. Jin, J. et al. Genuine time-bin-encoded quantum key distribution over a turbulent depolarizing free-space channel. Opt. Express 27, 37214–37223 (2019).

    Google Scholar 

  20. Vallone, G. et al. Interference at the single photon level along satellite-ground channels. Phys. Rev. Lett. 116, 253601 (2016).

    Google Scholar 

  21. Shepherd, G. G. et al. Wamdii: wide-angle michelson doppler imaging interferometer for spacelab. Appl. Opt. 24, 1571–1584 (1985).

    Google Scholar 

  22. Liu, D., Hostetler, C., Miller, I., Cook, A. & Hair, J. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar. Opt. Express 20, 1406–1420 (2012).

    Google Scholar 

  23. Liscidini, M. & Sipe, J. E. Scalable and efficient source of entangled frequency bins. Opt. Lett. 44, 2625 (2019).

    Google Scholar 

  24. Tagliavacche, N. et al. Frequency-bin entanglement-based quantum key distribution. npj Quantum Inf. 11, https://doi.org/10.1038/s41534-025-00991-5 (2025).

  25. Pang, Y. et al. Versatile chip-scale platform for high-rate entanglement generation using an AlGaAs microresonator array. PRX Quantum 6, 010338 (2025).

    Google Scholar 

  26. Loudon, R. The Quantum Theory of Light (Oxford University Press, 2000).

  27. Kuzucu, O., Wong, F. N. C., Kurimura, S. & Tovstonog, S. Joint temporal density measurements for two-photon state characterization. Phys. Rev. Lett. 101, https://doi.org/10.1103/PhysRevLett.101.153602(2008).

  28. Borghi, M., Pagano, P. L., Liscidini, M., Bajoni, D. & Galli, M. Uncorrelated photon pair generation from an integrated silicon nitride resonator measured by time-resolved coincidence detection. Opt. Lett. 49, 3966 (2024).

    Google Scholar 

  29. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Google Scholar 

  30. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    Google Scholar 

  31. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Google Scholar 

  32. Vanasse, G. A. Spectrometric Techniques Vol. 1 (Academic Press, 1977).

  33. Jin, J. et al. Demonstration of analyzers for multimode photonic time-bin qubits. Phys. Rev. A 97, 043847 (2018).

    Google Scholar 

  34. Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental EPR-steering using Bell-local states. Nat. Phy. 6, 845–849 (2010).

    Google Scholar 

  35. Uola, R., Costa, A. C. S., Nguyen, H. C. & Gühne, O. Quantum steering. Rev. Mod. Phys. 92, 015001 (2020).

    Google Scholar 

  36. Maassen, H. & Uffink, J. B. M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988).

    Google Scholar 

  37. Schneeloch, J., Broadbent, C. J., Walborn, S. P., Cavalcanti, E. G. & Howell, J. C. Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013).

    Google Scholar 

  38. Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989).

    Google Scholar 

  39. Cavalcanti, E. G., Jones, S. J., Wiseman, H. M. & Reid, M. D. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009).

    Google Scholar 

  40. Cozzolino, D., Da Lio, B., Bacco, D. & Oxenløwe, L. K. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, https://doi.org/10.1002/qute.201900038 (2019).

  41. Pennacchietti, M. et al. Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution. Commun. Phys. 7, 62 (2024).

    Google Scholar 

  42. McSorley, S. M. et al. Free-space optical-frequency comparison over rapidly moving links. Phys. Rev. Appl. 23, L021003 (2025).

    Google Scholar 

  43. Tannous, R. et al. Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution. Appl. Phys. Lett. 115, 211103 (2019).

    Google Scholar 

  44. Tannous, R. et al. Towards fully passive time-bin quantum key distribution over moving free-space channels. Opt. Express 33, 35635–35648 (2025).

    Google Scholar 

  45. Clemmen, S., Farsi, A., Ramelow, S. & Gaeta, A. L. Ramsey interference with single photons. Phys. Rev. Lett. 117, 223601 (2016).

    Google Scholar 

  46. Dekkers, K. et al. Observing high-dimensional bell inequality violations using multi-outcome spectral measurements. https://arxiv.org/abs/2506.20796 (2025).

  47. Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    Google Scholar 

  48. Imany, P. et al. 50-ghz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express 26, 1825–1840 (2018).

    Google Scholar 

  49. Morrison, C. L. et al. Frequency-bin entanglement from domain-engineered down-conversion. APL Photonics 7, 066102 (2022).

    Google Scholar 

  50. Henry, A. et al. Parallelization of frequency domain quantum gates: manipulation and distribution of frequency-entangled photon pairs generated by a 21 Â GHz silicon microresonator. Adv. Photonics 6, 036003 (2024).

    Google Scholar 

  51. Herriott, D. R. & Schulte, H. J. Folded optical delay lines. Appl. Opt. 4, 883–889 (1965).

    Google Scholar 

  52. Pepper, B., Ghobadi, R., Jeffrey, E., Simon, C. & Bouwmeester, D. Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109, 023601 (2012).

    Google Scholar 

  53. Lingaraju, N. B. et al. Bell state analyzer for spectrally distinct photons. Optica 9, 280–283 (2022).

    Google Scholar 

  54. Wang, F.-Y., Shi, B.-S. & Guo, G.-C. Observation of time correlation function of multimode two-photon pairs on a rubidium d2 line. Opt. Lett. 33, 2191–2193 (2008).

    Google Scholar 

  55. Yamazaki, T., Arizono, T., Kobayashi, T., Ikuta, R. & Yamamoto, T. Linear optical quantum computation with frequency-comb qubits and passive devices. Phys. Rev. Lett. 130, 200602 (2023).

    Google Scholar 

  56. Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics 14, 250–255 (2020).

    Google Scholar 

  57. Esmaeil Zadeh, I. et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).

    Google Scholar 

  58. Chang, J. et al. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution. Appl. Opt. 58, 9803–9807 (2019).

    Google Scholar 

  59. Matres, J. & Sorin, W. V. Simple model for ring resonators backscatter. Opt. Express 25, 3242–3251 (2017).

    Google Scholar 

  60. Martínez, N., Rodríguez-Ramos, L. F. & Sodnik, Z. Toward the uplink correction: application of adaptive optics techniques on free-space optical communications through the atmosphere. Opt. Eng. 57, 076106 (2018).

    Google Scholar 

  61. Vinet, S. et al. Frequency-bin entanglement analysis code. https://doi.org/10.5281/zenodo.16576461 (2025).

Download references

Acknowledgements

The authors thank Micro Photon Devices for kindly providing the MPD PDM-IR detector. The authors thank Kaylee Sherk, Kimia Mohammadi, Paul Godin, Katanya Kuntz, and Giuseppe Vallone for helpful discussions. This work is co-funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the European Union (EU) under Grant no. 101070168 (HyperSpace). The authors further acknowledge support from the NRC Quantum Sensing Challenge Program (QSP-019), the Canada Excellence Research Chair program (CERC), the Canadian Foundation for Innovation (CFI), the Ontario Research Fund (ORF), and the Institute for Quantum Computing. S.V. thanks the NSERC CGS-D for personal funding. M.C. and M.B. acknowledge support by the Italian Ministry of Education (MUR) PNRR project PE0000023-NQSTI.

Author information

Authors and Affiliations

  1. Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada

    Stéphane Vinet, Yujie Zhang, Luke Neal & Thomas Jennewein

  2. Dipartimento di Fisica “A. Volta”, Università di Pavia, Pavia, Italy

    Marco Clementi, Marcello Bacchi & Matteo Galli

  3. Dipartimento di Ingegneria dell’Informazione and Quantum Technologies Research Center, Università degli Studi di Padova, Padua, Italy

    Massimo Giacomin & Paolo Villoresi

  4. Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Pavia, Italy

    Daniele Bajoni

  5. Department of Physics, Simon Fraser University, Burnaby, BC, Canada

    Thomas Jennewein

Authors
  1. Stéphane Vinet
    View author publications

    Search author on:PubMed Google Scholar

  2. Marco Clementi
    View author publications

    Search author on:PubMed Google Scholar

  3. Marcello Bacchi
    View author publications

    Search author on:PubMed Google Scholar

  4. Yujie Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Massimo Giacomin
    View author publications

    Search author on:PubMed Google Scholar

  6. Luke Neal
    View author publications

    Search author on:PubMed Google Scholar

  7. Paolo Villoresi
    View author publications

    Search author on:PubMed Google Scholar

  8. Matteo Galli
    View author publications

    Search author on:PubMed Google Scholar

  9. Daniele Bajoni
    View author publications

    Search author on:PubMed Google Scholar

  10. Thomas Jennewein
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.V., Y.Z., M.B., M.Ga., D.B., and T.J. conceived the original idea. M.C. and Y.Z. developed the theoretical framework. M.C. and M.B. developed the frequency-bin entangled photon source. S.V. and M. Gi. engineered and fabricated the field-widened interferometers with the assistance of L.N. S.V., M.C., M.B., and M. Gi. performed the experimental measurements. P.V., M.Ga., D.B., and T.J. supervised the experiment. S.V. performed the data analysis with the assistance of M.C., Y.Z., and M.B. S.V., M.C., and Y.Z. wrote and revised the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Stéphane Vinet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinet, S., Clementi, M., Bacchi, M. et al. Time-resolved certification of frequency-bin entanglement over multi-mode channels. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-026-01183-5

Download citation

  • Received: 30 September 2025

  • Accepted: 12 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41534-026-01183-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing