Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Systems Biology and Applications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj systems biology and applications
  3. articles
  4. article
Computational approaches in chemical space exploration for carbon fixation pathways
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Computational approaches in chemical space exploration for carbon fixation pathways

  • Anne-Susann Abel1,2,
  • Nino Lauber1,
  • Jakob Lykke Andersen2,
  • Rolf Fagerberg2,
  • Daniel Merkle2,3 &
  • …
  • Christoph Flamm1 

npj Systems Biology and Applications , Article number:  (2026) Cite this article

  • 1016 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Chemistry
  • Computational biology and bioinformatics
  • Mathematics and computing

Abstract

Chemical space exploration is an important part of chemistry and biology, enabling the discovery and optimization of metabolic pathways, advancing synthetic metabolic functions, and understanding biochemical network evolution. We use a graph-based computational approach implemented in the cheminformatics software MØD, integrated with Integer Linear Programming (ILP) optimization, to systematically search chemical spaces. This approach allows for flexible and targeted queries, including identification of autocatalytic cycles, thermodynamic considerations, and discovery of novel enzymatic cascades. Specifically, we explore the chemical space of natural and artificial carbon fixation pathways defined from relevant enzyme reactions. By applying different optimization criteria, we identify new varieties and recombinations of natural autocatalytic pathways, and compare the properties of the pathways. This work highlights the versatility of graph-based cheminformatics for the purpose of chemical space exploration and artificial pathway design. Potential applications of this framework extend to carbon capture technologies, improved agricultural yields, and value-added chemical production, advancing efforts to address global sustainability challenges.

Similar content being viewed by others

Network topology mapping of chemical compounds space

Article Open access 04 March 2024

An explainable deep learning platform for molecular discovery

Article 09 December 2024

Chemical reservoir computation in a self-organizing reaction network

Article Open access 26 June 2024

Data availability

The datasets generated and analyzed during the current study, as well as the underlying code are available in the GitHub repository https://github.com/anne-susann/C_fixation_pathway_design.

References

  1. Burkart, M. D., Hazari, N., Tway, C. L. & Zeitler, E. L. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal. 9, 7937–7956 (2019).

    Google Scholar 

  2. Yusuf, N., Almomani, F. & Qiblawey, H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel 345, 128178 (2023).

    Google Scholar 

  3. Bar-Even, A., Flamholz, A., Noor, E. & Milo, R. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochimica et. Biophysica Acta (BBA) - Bioenerg. 1817, 1646–1659 (2012).

    Google Scholar 

  4. Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012).

    Google Scholar 

  5. Evans, M. C., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. 55, 928–934 (1966).

    Google Scholar 

  6. Benson, A. A. et al. The path of carbon in photosynthesis: XV. Ribulose and sedoheptulose.J. Biol. Chem. 196, 703–716 (1952).

    Google Scholar 

  7. Ragsdale, S. W. The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 6, 3–11 (1997).

    Google Scholar 

  8. Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Sci. (N. Y., N.Y.) 318, 1782–1786 (2007).

    Google Scholar 

  9. Huber, H. et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc. Natl. Acad. Sci. 105, 7851–7856 (2008).

    Google Scholar 

  10. Zarzycki, J., Brecht, V., Müller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. 106, 21317–21322 (2009).

    Google Scholar 

  11. Figueroa, I. A. et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc. Natl. Acad. Sci. 115, E92–E101 (2018).

    Google Scholar 

  12. Zhao, T., Li, Y. & Zhang, Y. Biological carbon fixation: a thermodynamic perspective. Green. Chem. 23, 7852–7864 (2021).

    Google Scholar 

  13. Santos Correa, S., Schultz, J., Lauersen, K. J. & Soares Rosado, A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J. Adv. Res. 47, 75–92 (2023).

    Google Scholar 

  14. Barenholz, U. et al. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points. eLife 6, e20667 (2017).

    Google Scholar 

  15. Luo, S. et al. A cell-free self-replenishing CO2-fixing system. Nat. Catal. 5, 154–162 (2022).

    Google Scholar 

  16. Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Google Scholar 

  17. McLean, R. et al. Exploring alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic CO2 fixation. Sci. Adv. 9, eadh4299 (2023).

    Google Scholar 

  18. Löwe, H. & Kremling, A. In-Depth Computational Analysis of Natural and Artificial Carbon Fixation Pathways. BioDesign Res. 2021, 9898316 (2021).

    Google Scholar 

  19. Andersen, J. L., Flamm, C., Merkle, D. & Stadler, P. F. A Software Package for Chemically Inspired Graph Transformation. In Echahed, R. & Minas, M. (eds.) Graph Transformation, 73–88 (Springer International Publishing, Cham, 2016).

  20. Andersen, J. L., Flamm, C., Merkle, D. & Stadler, P. F. Chemical Transformation Motifs–Modelling Pathways as Integer Hyperflows. IEEE/ACM Trans. Computational Biol. Bioinforma. 16, 510–523 (2019).

    Google Scholar 

  21. Ni, Z., Stine, A. E., Tyo, K. E. & Broadbelt, L. J. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design. Metab. Eng. 65, 79–87 (2021).

    Google Scholar 

  22. Machado, D. et al. Modeling formalisms in Systems Biology. AMB Express 1, 45 (2011).

    Google Scholar 

  23. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator–the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).

    Google Scholar 

  24. Beber, M. E. et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. 50, D603–D609 (2022).

    Google Scholar 

  25. Xiao, L. et al. A Minimized Synthetic Carbon Fixation Cycle. ACS Catal. 12, 799–808 (2022).

    Google Scholar 

  26. Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. 107, 8889–8894 (2010).

    Google Scholar 

  27. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008).

    Google Scholar 

  28. Shen, C. R. et al. Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905–2915 (2011).

    Google Scholar 

  29. Sperl, J. M. & Sieber, V. Multienzyme Cascade Reactions–Status and Recent Advances. ACS Catal. 8, 2385–2396 (2018).

    Google Scholar 

  30. Cutlan, R., De Rose, S., Isupov, M. N., Littlechild, J. A. & Harmer, N. J. Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. Biochimica et. Biophysica Acta (BBA) - Proteins Proteom. 1868, 140322 (2020).

    Google Scholar 

  31. Benítez-Mateos, A. I., Roura Padrosa, D. & Paradisi, F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat. Chem. 14, 489–499 (2022).

    Google Scholar 

  32. Hellgren, J., Godina, A., Nielsen, J. & Siewers, V. Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metab. Eng. 62, 150–160 (2020).

    Google Scholar 

  33. Müller, S., Flamm, C. & Stadler, P. F. What makes a reaction network “chemical”? J. Cheminformatics 14, 63 (2022).

    Google Scholar 

  34. Andersen, J. L., Flamm, C., Merkle, D. & Stadler, P. F. Generic Strategies for Chemical Space Exploration http://arxiv.org/abs/1302.4006 ArXiv:1302.4006 [cs, q-bio] (2014).

  35. Andersen, J. L. & Merkle, D. A Generic Framework for Engineering Graph Canonization Algorithms. In 2018 Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), Proceedings, 139–153 (Society for Industrial and Applied Mathematics, 2018).

  36. Himsolt, M. GML: A portable graph file format. Tech. Rep., Technical report, Universitat Passau (1997).

  37. Andersen, J. L., Flamm, C., Merkle, D. & Stadler, P. F. Defining Autocatalysis in Chemical Reaction Networks. J. Syst. Chem. 8, 121–133 (2020).

    Google Scholar 

  38. Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 1077–1184 (1994).

    Google Scholar 

  39. Orth, J. D., Thiele, I. & Palsson, B. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Google Scholar 

  40. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual https://www.gurobi.com (2024).

  41. Forst, C. V., Flamm, C., Hofacker, I. L. & Stadler, P. F. Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinforma. 7, 67 (2006).

    Google Scholar 

  42. Noor, E., Haraldsdóttir, H. S., Milo, R. & Fleming, R. M. T. Consistent Estimation of Gibbs Energy Using Component Contributions. PLOS Computational Biol. 9, e1003098 (2013).

    Google Scholar 

  43. Jankowski, M. D., Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks. Biophysical J. 95, 1487–1499 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Annette Taylor (University of South Hampton) for scientific discussions and her input on the manuscript. This project was funded by the European Unions Horizon Europe Doctoral Network program under the Marie-Skłodowska-Curie grant agreement No 101072930 (TACsy - Training Alliance for Computational systems chemistry). The funder played no role in study design, analysis, and interpretation of the data.

Author information

Authors and Affiliations

  1. Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria

    Anne-Susann Abel, Nino Lauber & Christoph Flamm

  2. Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

    Anne-Susann Abel, Jakob Lykke Andersen, Rolf Fagerberg & Daniel Merkle

  3. Algorithmic Cheminformatics Group, Faculty of Technology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany

    Daniel Merkle

Authors
  1. Anne-Susann Abel
    View author publications

    Search author on:PubMed Google Scholar

  2. Nino Lauber
    View author publications

    Search author on:PubMed Google Scholar

  3. Jakob Lykke Andersen
    View author publications

    Search author on:PubMed Google Scholar

  4. Rolf Fagerberg
    View author publications

    Search author on:PubMed Google Scholar

  5. Daniel Merkle
    View author publications

    Search author on:PubMed Google Scholar

  6. Christoph Flamm
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.F., R.F., J.L.A., D.M. conceptualized and supervised the study. J.L.A., N.L., and C.F. provided the computational framework, and with A-S.A. they designed the set-up and experiments. A-S.A. implemented and performed the computational experiments, the data analysis, and the writing and editing of the paper. C.F., R.F., J.L.A., and D.M. revised and with N.L. edited the manuscript.

Corresponding authors

Correspondence to Anne-Susann Abel or Christoph Flamm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, AS., Lauber, N., Andersen, J.L. et al. Computational approaches in chemical space exploration for carbon fixation pathways. npj Syst Biol Appl (2026). https://doi.org/10.1038/s41540-025-00641-8

Download citation

  • Received: 22 September 2025

  • Accepted: 17 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41540-025-00641-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Systems Biology and Applications (npj Syst Biol Appl)

ISSN 2056-7189 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics