Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cosmic accretion shocks as a tool to measure the dark matter mass of galaxy clusters

Abstract

Cosmological accretion shocks created during the formation of galaxy clusters are a ubiquitous phenomenon all around the universe. These shocks and their features are intimately related with the gravitational energy at stake during galaxy cluster formation. Studying a sample of simulated galaxy clusters and their associated accretion shocks, we show that objects in our sample sit in a plane within the three-dimensional space of cluster total mass, shock radius and Mach number (a measure of shock intensity). Using this relation, and considering that forthcoming new observations will be able to measure shock radii and intensities, we put forward the idea that the dark matter content of galaxy clusters could be indirectly measured with an error up to around 30% at the 1σ confidence level. This procedure would be a new and independent method to measure the dark matter mass in cosmic structures and a novel constraint to the accepted Lambda cold dark matter paradigm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Best-fit relations for the mass, \({\mathbf{log }}_{\mathbf{10}}{\boldsymbol{M}}{\mathbf{(}}{\boldsymbol{<}}{\mathbf{2}}{\boldsymbol{R}}_{{{{\mathbf{vir}}}}}{\mathbf{)}}{\mathbf{=}}{\boldsymbol{f}}{\mathbf{(}}{\mathbf{log }}_{\mathbf{10}}{\boldsymbol{R}}_{{{{\mathbf{sh}}}}},{{{\boldsymbol{\mathcal{{M}}}}}}_{{{{\mathbf{sh}}}}}{\mathbf{)}}\).
Fig. 2: Scaling relation evolution summary.
Fig. 3: Distribution of the masses recovered by our best-fit relation to assess its intrinsic scatter.

Similar content being viewed by others

Data availability

The data presented in the figures has been provided as Supplementary Information. Further data underlying this article will be shared upon reasonable request to the corresponding author.

Code availability

The halo finder ASOHF is publicly available via GitHub at https://github.com/dvallesp/ASOHF. The shock finder, the simulation code (MASCLET) and the codes for analysing the output data and producing the figures will be shared upon reasonable request to the corresponding author.

References

  1. Zel’dovich, Y. B. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970).

    ADS  Google Scholar 

  2. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).

    Article  ADS  Google Scholar 

  3. Gott III, J. R. & Rees, M. J. A theory of galaxy formation and clustering. Astron. Astrophys. 45, 365–376 (1975).

    ADS  Google Scholar 

  4. Böhringer, H. & Werner, N. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).

    Article  ADS  Google Scholar 

  5. Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).

    Article  ADS  Google Scholar 

  6. Planelles, S., Schleicher, D. R. G. & Bykov, A. M. Large-scale structure formation: from the first non-linear objects to massive galaxy clusters. Space Sci. Rev. 188, 93–139 (2015).

    Article  ADS  Google Scholar 

  7. Walker, S. et al. The physics of galaxy cluster outskirts. Space Sci. Rev. 215, 7 (2019).

    Article  ADS  Google Scholar 

  8. Tozzi, P. & Norman, C. The evolution of X-ray clusters and the entropy of the intracluster medium. Astrophys. J. 546, 63–84 (2001).

    Article  ADS  Google Scholar 

  9. Nagai, D., Kravtsov, A. V. & Vikhlinin, A. Effects of galaxy formation on thermodynamics of the intracluster medium. Astrophys. J. 668, 1–14 (2007).

    Article  ADS  Google Scholar 

  10. Bykov, A. M. et al. Structures and components in galaxy clusters: observations and models. Space Sci. Rev. 188, 141–185 (2015).

    Article  ADS  Google Scholar 

  11. Allen, S. W., Evrard, A. E. & Mantz, A. B. Cosmological parameters from observations of galaxy clusters. Annu. Rev. Astron. Astrophys. 49, 409–470 (2011).

    Article  ADS  Google Scholar 

  12. Weinberg, D. H. et al. Observational probes of cosmic acceleration. Phys. Rep. 530, 87–255 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. Clerc, N. & Finoguenov, A. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_117-1

  14. Biffi, V. et al. On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016).

    Article  ADS  Google Scholar 

  15. Ettori, S. et al. Hydrostatic mass profiles in X-COP galaxy clusters. Astron. Astrophys. 621, A39 (2019).

    Article  Google Scholar 

  16. Lovisari, L. & Maughan, B. J. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_118-1

  17. Giodini, S. et al. Scaling relations for galaxy clusters: properties and evolution. Space Sci. Rev. 177, 247–282 (2013).

    Article  ADS  Google Scholar 

  18. Umetsu, K. Cluster–galaxy weak lensing. Astron. Astrophys. Rev. 28, 7 (2020).

    Article  ADS  Google Scholar 

  19. Diaferio, A. Mass estimation in the outer regions of galaxy clusters. Mon. Not. R. Astron. Soc. 309, 610–622 (1999).

    Article  ADS  Google Scholar 

  20. Pratt, G. W. et al. The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population. Space Sci. Rev. 215, 25 (2019).

    Article  ADS  Google Scholar 

  21. Quilis, V., Ibáñez, J. M. & Sáez, D. On the role of shock waves in galaxy cluster evolution. Astrophys. J. 502, 518 (1998).

    Article  ADS  Google Scholar 

  22. Miniati, F. et al. Properties of cosmic shock waves in large-scale structure formation. Astrophys. J. 542, 608 (2000).

    Article  ADS  Google Scholar 

  23. Ryu, D., Kang, H., Hallman, E. & Jones, T. W. Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003).

    Article  ADS  Google Scholar 

  24. Bertschinger, E. Cosmological self-similar shock waves and galaxy formation. Astrophys. J. 268, 17–29 (1983).

    Article  ADS  Google Scholar 

  25. Shi, X. Locations of accretion shocks around galaxy clusters and the ICM properties: insights from self-similar spherical collapse with arbitrary mass accretion rates. Mon. Not. R. Astron. Soc. 461, 1804–1815 (2016).

    Article  ADS  Google Scholar 

  26. Zhang, C., Zhuravleva, I., Kravtsov, A. & Churazov, E. Evolution of splashback boundaries and gaseous outskirts: insights from mergers of self-similar galaxy clusters. Mon. Not. R. Astron. Soc. 506, 839–863 (2021).

    Article  ADS  Google Scholar 

  27. Aung, H., Nagai, D. & Lau, E. T. Shock and splash: gas and dark matter halo boundaries around ΛCDM galaxy clusters. Mon. Not. R. Astron. Soc. 508, 2071–2078 (2021).

    Article  ADS  Google Scholar 

  28. Pratt, C. T., Qu, Z. & Bregman, J. N. The resolved Sunyaev-Zel’dovich profiles of nearby galaxy groups. Astrophys. J. 920, 104 (2021).

    Article  ADS  Google Scholar 

  29. Anbajagane, D. et al. Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters II: measurements from SPT-SZ + Planck Compton-y map. Mon. Not. R. Astron. Soc. 514, 1645–1663 (2022).

    Article  ADS  Google Scholar 

  30. Anbajagane, D. et al. Cosmological shocks around galaxy clusters: a coherent investigation with DES, SPT, and ACT. Mon. Not. R. Astron. Soc. 527, 9378–9404 (2024).

    Article  ADS  Google Scholar 

  31. Reiss, I. & Keshet, U. Detection of virial shocks in stacked Fermi-LAT galaxy clusters. J. Cosmol. Astropart. Phys. 2018, 010 (2018).

    Article  Google Scholar 

  32. Hou, K.-C., Hallinan, G. & Keshet, U. Synchrotron emission from virial shocks around stacked OVRO-LWA galaxy clusters. Mon. Not. R. Astron. Soc. 521, 5786–5809 (2023).

    Article  ADS  Google Scholar 

  33. Vernstrom, T. et al. Polarized accretion shocks from the cosmic web. Sci. Adv. 9, eade7233 (2023).

    Article  Google Scholar 

  34. Keshet, U., Kushnir, D., Loeb, A. & Waxman, E. Preliminary evidence for a virial shock around the coma galaxy cluster. Astrophys. J. 845, 24 (2017).

    Article  ADS  Google Scholar 

  35. Zhu, Z. et al. A shock near the virial radius of the Perseus Cluster. Astron. Astrophys. 652, A147 (2021).

    Article  Google Scholar 

  36. Hurier, G., Adam, R. & Keshet, U. First detection of a virial shock with SZ data: implication for the mass accretion rate of Abell 2319. Astron. Astrophys. 622, A136 (2019).

    Article  ADS  Google Scholar 

  37. Holguin Luna, P. & Burchett, J. Localizing the accretion shock and constraining gaseous conditions in galaxy cluster outskirts with UV absorption spectroscopy. Bull. Am. Astron. Soc. 54, 2022n6i427p02 (2022).

  38. Vazza, F. et al. Detecting shocked intergalactic gas with X-ray and radio observations. Astron. Astrophys. 627, A5 (2019).

    Article  Google Scholar 

  39. Baxter, E. J. et al. Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters - I. Analysis with the three hundred simulations. Mon. Not. R. Astron. Soc. 508, 1777–1787 (2021).

    Article  ADS  Google Scholar 

  40. Simionescu, A. et al. Voyage through the hidden physics of the cosmic web. Exp. Astron. 51, 1043–1079 (2021).

    Article  ADS  Google Scholar 

  41. Kang, H., Ryu, D., Cen, R. & Ostriker, J. P. Cosmological shock waves in the large-scale structure of the universe: nongravitational effects. Astrophys. J. 669, 729–740 (2007).

    Article  ADS  Google Scholar 

  42. Walker, S. & Lau, E. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_120-1

  43. Andreon, S., Trinchieri, G., Moretti, A. & Wang, J. Intrinsic scatter of caustic masses and hydrostatic bias: an observational study. Astron. Astrophys. 606, A25 (2017).

    Article  ADS  Google Scholar 

  44. Lau, E. T., Kravtsov, A. V. & Nagai, D. Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009).

    Article  ADS  Google Scholar 

  45. Angelinelli, M. et al. Turbulent pressure support and hydrostatic mass bias in the intracluster medium. Mon. Not. R. Astron. Soc. 495, 864–885 (2020).

    Article  ADS  Google Scholar 

  46. Rasia, E. et al. Temperature structure of the intracluster medium from smoothed-particle hydrodynamics and adaptive-mesh refinement simulations. Astrophys. J. 791, 96 (2014).

    Article  ADS  Google Scholar 

  47. Okabe, N. & Smith, G. P. LoCuSS: weak-lensing mass calibration of galaxy clusters. Mon. Not. R. Astron. Soc. 461, 3794–3821 (2016).

    Article  ADS  Google Scholar 

  48. Meneghetti, M. et al. Weighing simulated galaxy clusters using lensing and X-ray. Astron. Astrophys. 514, A93 (2010).

    Article  Google Scholar 

  49. Berger, M. J. & Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989).

    Article  ADS  Google Scholar 

  50. Quilis, V. A new multidimensional adaptive mesh refinement hydro + gravity cosmological code. Mon. Not. R. Astron. Soc. 352, 1426–1438 (2004).

    Article  ADS  Google Scholar 

  51. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (Institute of Physics Publishing, 1988).

  52. Godunov, S. K. & Bohachevsky, I. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik 47(89), 271–306 (1959).

    Google Scholar 

  53. Colella, P. & Woodward, P. R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).

    Article  ADS  Google Scholar 

  54. Martí, J. M. S. S. & Müller, E. Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys. 123, 1–14 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  55. Vazza, F., Brunetti, G. & Gheller, C. Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009).

    Article  ADS  Google Scholar 

  56. Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  57. Eisenstein, D. J. & Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 496, 605–614 (1998).

    Article  ADS  Google Scholar 

  58. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Supplementary Ser. 88, 253 (1993).

    Article  ADS  Google Scholar 

  59. Haardt, F. & Madau, P. Radiative transfer in a clumpy universe. II. The ultraviolet extragalactic background. Astrophys. J. 461, 20 (1996).

    Article  ADS  Google Scholar 

  60. Planelles, S. et al. Exploring the role of cosmological shock waves in the Dianoga simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 507, 5703–5719 (2021).

    Article  ADS  Google Scholar 

  61. Planelles, S. & Quilis, V. Cosmological shock waves: clues to the formation history of haloes. Mon. Not. R. Astron. Soc. 428, 1643–1655 (2013).

    Article  ADS  Google Scholar 

  62. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, 1959).

  63. Skillman, S. W., O’Shea, B. W., Hallman, E. J., Burns, J. O. & Norman, M. L. Cosmological shocks in adaptive mesh refinement simulations and the acceleration of cosmic rays. Astrophys. J. 689, 1063–1077 (2008).

    Article  ADS  Google Scholar 

  64. Schaal, K. & Springel, V. Shock finding on a moving mesh - I. Shock statistics in non-radiative cosmological simulations. Mon. Not. R. Astron. Soc. 446, 3992–4007 (2015).

    Article  ADS  Google Scholar 

  65. Vazza, F. et al. A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures. Mon. Not. R. Astron. Soc. 418, 960–985 (2011).

    Article  ADS  Google Scholar 

  66. Planelles, S. & Quilis, V. ASOHF: a new adaptive spherical overdensity halo finder. Astron. Astrophys. 519, A94 (2010).

    Article  ADS  Google Scholar 

  67. Knebe, A. et al. Haloes gone MAD: the halo-finder comparison project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).

    Article  ADS  Google Scholar 

  68. Vallés-Pérez, D., Planelles, S. & Quilis, V. The halo-finding problem revisited: a deep revision of the ASOHF code. Astron. Astrophys. 664, A42 (2022).

    Article  ADS  Google Scholar 

  69. Cole, S. & Lacey, C. The structure of dark matter haloes in hierarchical clustering models. Mon. Not. R. Astron. Soc. 281, 716 (1996).

    Article  ADS  Google Scholar 

  70. Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).

    Article  ADS  Google Scholar 

  71. Diemer, B. & Kravtsov, A. V. Dependence of the outer density profiles of halos on their mass accretion rate. Astrophys. J. 789, 1 (2014).

    Article  ADS  Google Scholar 

  72. Vallés-Pérez, D., Planelles, S. & Quilis, V. On the accretion history of galaxy clusters: temporal and spatial distribution. Mon. Not. R. Astron. Soc. 499, 2303–2318 (2020).

    Article  ADS  Google Scholar 

  73. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  ADS  Google Scholar 

  74. Vallés-Pérez, D., Planelles, S., Monllor-Berbegal, Ó. & Quilis, V. On the choice of the most suitable indicator for the assembly state of dark matter haloes through cosmic time. Mon. Not. R. Astron. Soc. 519, 6111–6125 (2023).

    Article  ADS  Google Scholar 

  75. Scott, D. W. Multivariate Density Estimation (Wiley, 1992).

  76. Tipping, M. & Bishop, C. Mixtures of probabilistic principal component analysers. Neural Comput. 11, 443–482 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

D.V.-P., V.Q. and S.P. have been supported by the Agencia Estatal de Investigación Española (grant no. PID2022-138855NB-C33), the Ministerio de Ciencia e Innovación within the Plan de Recuperación, Transformación y Resiliencia del Gobierno de España through the project ASFAE/2022/001, with funding from European Union NextGenerationEU (grant no. PRTR-C17.I1), and by the Generalitat Valenciana (grant no. CIPROM/2022/49). D.V.-P. acknowledges additional support from Universitat de València through an Atracció de Talent fellowship. Simulations have been carried out using the supercomputer Lluís Vives at the Servei d’Informàtica of the Universitat de València.

Author information

Authors and Affiliations

Authors

Contributions

V.Q. initiated the project. V.Q. and D.V.-P. ran the cosmological simulation. S.P. and D.V.-P. developed the shock and halo finders. D.V.-P. performed the data analysis and produced the figures. D.V.-P., S.P. and V.Q. discussed the results and wrote this paper.

Corresponding author

Correspondence to David Vallés-Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Franco Vazza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The file contains all the supplementary material for the paper. This includes ten supplementary discussion sections (A–J), Figs. 1–11 and Table 1.

Source data

Source Data Fig. 1

Data points for the upper and lower panels of Fig. 1 in the main text.

Source Data Fig. 2

Data points and error bars for the upper-left, upper-right, lower-left and lower-right panels in Fig. 2.

Source Data Fig. 3

Values for the colormap representation and for the lines shown in the left-hand and right-hand panels of Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallés-Pérez, D., Quilis, V. & Planelles, S. Cosmic accretion shocks as a tool to measure the dark matter mass of galaxy clusters. Nat Astron 8, 1195–1204 (2024). https://doi.org/10.1038/s41550-024-02303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02303-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing