Abstract
Cosmological accretion shocks created during the formation of galaxy clusters are a ubiquitous phenomenon all around the universe. These shocks and their features are intimately related with the gravitational energy at stake during galaxy cluster formation. Studying a sample of simulated galaxy clusters and their associated accretion shocks, we show that objects in our sample sit in a plane within the three-dimensional space of cluster total mass, shock radius and Mach number (a measure of shock intensity). Using this relation, and considering that forthcoming new observations will be able to measure shock radii and intensities, we put forward the idea that the dark matter content of galaxy clusters could be indirectly measured with an error up to around 30% at the 1σ confidence level. This procedure would be a new and independent method to measure the dark matter mass in cosmic structures and a novel constraint to the accepted Lambda cold dark matter paradigm.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
The data presented in the figures has been provided as Supplementary Information. Further data underlying this article will be shared upon reasonable request to the corresponding author.
Code availability
The halo finder ASOHF is publicly available via GitHub at https://github.com/dvallesp/ASOHF. The shock finder, the simulation code (MASCLET) and the codes for analysing the output data and producing the figures will be shared upon reasonable request to the corresponding author.
References
Zel’dovich, Y. B. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970).
Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).
Gott III, J. R. & Rees, M. J. A theory of galaxy formation and clustering. Astron. Astrophys. 45, 365–376 (1975).
Böhringer, H. & Werner, N. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).
Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).
Planelles, S., Schleicher, D. R. G. & Bykov, A. M. Large-scale structure formation: from the first non-linear objects to massive galaxy clusters. Space Sci. Rev. 188, 93–139 (2015).
Walker, S. et al. The physics of galaxy cluster outskirts. Space Sci. Rev. 215, 7 (2019).
Tozzi, P. & Norman, C. The evolution of X-ray clusters and the entropy of the intracluster medium. Astrophys. J. 546, 63–84 (2001).
Nagai, D., Kravtsov, A. V. & Vikhlinin, A. Effects of galaxy formation on thermodynamics of the intracluster medium. Astrophys. J. 668, 1–14 (2007).
Bykov, A. M. et al. Structures and components in galaxy clusters: observations and models. Space Sci. Rev. 188, 141–185 (2015).
Allen, S. W., Evrard, A. E. & Mantz, A. B. Cosmological parameters from observations of galaxy clusters. Annu. Rev. Astron. Astrophys. 49, 409–470 (2011).
Weinberg, D. H. et al. Observational probes of cosmic acceleration. Phys. Rep. 530, 87–255 (2013).
Clerc, N. & Finoguenov, A. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_117-1
Biffi, V. et al. On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016).
Ettori, S. et al. Hydrostatic mass profiles in X-COP galaxy clusters. Astron. Astrophys. 621, A39 (2019).
Lovisari, L. & Maughan, B. J. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_118-1
Giodini, S. et al. Scaling relations for galaxy clusters: properties and evolution. Space Sci. Rev. 177, 247–282 (2013).
Umetsu, K. Cluster–galaxy weak lensing. Astron. Astrophys. Rev. 28, 7 (2020).
Diaferio, A. Mass estimation in the outer regions of galaxy clusters. Mon. Not. R. Astron. Soc. 309, 610–622 (1999).
Pratt, G. W. et al. The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population. Space Sci. Rev. 215, 25 (2019).
Quilis, V., Ibáñez, J. M. & Sáez, D. On the role of shock waves in galaxy cluster evolution. Astrophys. J. 502, 518 (1998).
Miniati, F. et al. Properties of cosmic shock waves in large-scale structure formation. Astrophys. J. 542, 608 (2000).
Ryu, D., Kang, H., Hallman, E. & Jones, T. W. Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003).
Bertschinger, E. Cosmological self-similar shock waves and galaxy formation. Astrophys. J. 268, 17–29 (1983).
Shi, X. Locations of accretion shocks around galaxy clusters and the ICM properties: insights from self-similar spherical collapse with arbitrary mass accretion rates. Mon. Not. R. Astron. Soc. 461, 1804–1815 (2016).
Zhang, C., Zhuravleva, I., Kravtsov, A. & Churazov, E. Evolution of splashback boundaries and gaseous outskirts: insights from mergers of self-similar galaxy clusters. Mon. Not. R. Astron. Soc. 506, 839–863 (2021).
Aung, H., Nagai, D. & Lau, E. T. Shock and splash: gas and dark matter halo boundaries around ΛCDM galaxy clusters. Mon. Not. R. Astron. Soc. 508, 2071–2078 (2021).
Pratt, C. T., Qu, Z. & Bregman, J. N. The resolved Sunyaev-Zel’dovich profiles of nearby galaxy groups. Astrophys. J. 920, 104 (2021).
Anbajagane, D. et al. Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters II: measurements from SPT-SZ + Planck Compton-y map. Mon. Not. R. Astron. Soc. 514, 1645–1663 (2022).
Anbajagane, D. et al. Cosmological shocks around galaxy clusters: a coherent investigation with DES, SPT, and ACT. Mon. Not. R. Astron. Soc. 527, 9378–9404 (2024).
Reiss, I. & Keshet, U. Detection of virial shocks in stacked Fermi-LAT galaxy clusters. J. Cosmol. Astropart. Phys. 2018, 010 (2018).
Hou, K.-C., Hallinan, G. & Keshet, U. Synchrotron emission from virial shocks around stacked OVRO-LWA galaxy clusters. Mon. Not. R. Astron. Soc. 521, 5786–5809 (2023).
Vernstrom, T. et al. Polarized accretion shocks from the cosmic web. Sci. Adv. 9, eade7233 (2023).
Keshet, U., Kushnir, D., Loeb, A. & Waxman, E. Preliminary evidence for a virial shock around the coma galaxy cluster. Astrophys. J. 845, 24 (2017).
Zhu, Z. et al. A shock near the virial radius of the Perseus Cluster. Astron. Astrophys. 652, A147 (2021).
Hurier, G., Adam, R. & Keshet, U. First detection of a virial shock with SZ data: implication for the mass accretion rate of Abell 2319. Astron. Astrophys. 622, A136 (2019).
Holguin Luna, P. & Burchett, J. Localizing the accretion shock and constraining gaseous conditions in galaxy cluster outskirts with UV absorption spectroscopy. Bull. Am. Astron. Soc. 54, 2022n6i427p02 (2022).
Vazza, F. et al. Detecting shocked intergalactic gas with X-ray and radio observations. Astron. Astrophys. 627, A5 (2019).
Baxter, E. J. et al. Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters - I. Analysis with the three hundred simulations. Mon. Not. R. Astron. Soc. 508, 1777–1787 (2021).
Simionescu, A. et al. Voyage through the hidden physics of the cosmic web. Exp. Astron. 51, 1043–1079 (2021).
Kang, H., Ryu, D., Cen, R. & Ostriker, J. P. Cosmological shock waves in the large-scale structure of the universe: nongravitational effects. Astrophys. J. 669, 729–740 (2007).
Walker, S. & Lau, E. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) (Springer Nature Singapore, 2022); https://doi.org/10.1007/978-981-16-4544-0_120-1
Andreon, S., Trinchieri, G., Moretti, A. & Wang, J. Intrinsic scatter of caustic masses and hydrostatic bias: an observational study. Astron. Astrophys. 606, A25 (2017).
Lau, E. T., Kravtsov, A. V. & Nagai, D. Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009).
Angelinelli, M. et al. Turbulent pressure support and hydrostatic mass bias in the intracluster medium. Mon. Not. R. Astron. Soc. 495, 864–885 (2020).
Rasia, E. et al. Temperature structure of the intracluster medium from smoothed-particle hydrodynamics and adaptive-mesh refinement simulations. Astrophys. J. 791, 96 (2014).
Okabe, N. & Smith, G. P. LoCuSS: weak-lensing mass calibration of galaxy clusters. Mon. Not. R. Astron. Soc. 461, 3794–3821 (2016).
Meneghetti, M. et al. Weighing simulated galaxy clusters using lensing and X-ray. Astron. Astrophys. 514, A93 (2010).
Berger, M. J. & Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989).
Quilis, V. A new multidimensional adaptive mesh refinement hydro + gravity cosmological code. Mon. Not. R. Astron. Soc. 352, 1426–1438 (2004).
Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (Institute of Physics Publishing, 1988).
Godunov, S. K. & Bohachevsky, I. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik 47(89), 271–306 (1959).
Colella, P. & Woodward, P. R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).
Martí, J. M. S. S. & Müller, E. Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys. 123, 1–14 (1996).
Vazza, F., Brunetti, G. & Gheller, C. Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009).
Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Eisenstein, D. J. & Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 496, 605–614 (1998).
Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Supplementary Ser. 88, 253 (1993).
Haardt, F. & Madau, P. Radiative transfer in a clumpy universe. II. The ultraviolet extragalactic background. Astrophys. J. 461, 20 (1996).
Planelles, S. et al. Exploring the role of cosmological shock waves in the Dianoga simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 507, 5703–5719 (2021).
Planelles, S. & Quilis, V. Cosmological shock waves: clues to the formation history of haloes. Mon. Not. R. Astron. Soc. 428, 1643–1655 (2013).
Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, 1959).
Skillman, S. W., O’Shea, B. W., Hallman, E. J., Burns, J. O. & Norman, M. L. Cosmological shocks in adaptive mesh refinement simulations and the acceleration of cosmic rays. Astrophys. J. 689, 1063–1077 (2008).
Schaal, K. & Springel, V. Shock finding on a moving mesh - I. Shock statistics in non-radiative cosmological simulations. Mon. Not. R. Astron. Soc. 446, 3992–4007 (2015).
Vazza, F. et al. A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures. Mon. Not. R. Astron. Soc. 418, 960–985 (2011).
Planelles, S. & Quilis, V. ASOHF: a new adaptive spherical overdensity halo finder. Astron. Astrophys. 519, A94 (2010).
Knebe, A. et al. Haloes gone MAD: the halo-finder comparison project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).
Vallés-Pérez, D., Planelles, S. & Quilis, V. The halo-finding problem revisited: a deep revision of the ASOHF code. Astron. Astrophys. 664, A42 (2022).
Cole, S. & Lacey, C. The structure of dark matter haloes in hierarchical clustering models. Mon. Not. R. Astron. Soc. 281, 716 (1996).
Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).
Diemer, B. & Kravtsov, A. V. Dependence of the outer density profiles of halos on their mass accretion rate. Astrophys. J. 789, 1 (2014).
Vallés-Pérez, D., Planelles, S. & Quilis, V. On the accretion history of galaxy clusters: temporal and spatial distribution. Mon. Not. R. Astron. Soc. 499, 2303–2318 (2020).
Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
Vallés-Pérez, D., Planelles, S., Monllor-Berbegal, Ó. & Quilis, V. On the choice of the most suitable indicator for the assembly state of dark matter haloes through cosmic time. Mon. Not. R. Astron. Soc. 519, 6111–6125 (2023).
Scott, D. W. Multivariate Density Estimation (Wiley, 1992).
Tipping, M. & Bishop, C. Mixtures of probabilistic principal component analysers. Neural Comput. 11, 443–482 (1999).
Acknowledgements
D.V.-P., V.Q. and S.P. have been supported by the Agencia Estatal de Investigación Española (grant no. PID2022-138855NB-C33), the Ministerio de Ciencia e Innovación within the Plan de Recuperación, Transformación y Resiliencia del Gobierno de España through the project ASFAE/2022/001, with funding from European Union NextGenerationEU (grant no. PRTR-C17.I1), and by the Generalitat Valenciana (grant no. CIPROM/2022/49). D.V.-P. acknowledges additional support from Universitat de València through an Atracció de Talent fellowship. Simulations have been carried out using the supercomputer Lluís Vives at the Servei d’Informàtica of the Universitat de València.
Author information
Authors and Affiliations
Contributions
V.Q. initiated the project. V.Q. and D.V.-P. ran the cosmological simulation. S.P. and D.V.-P. developed the shock and halo finders. D.V.-P. performed the data analysis and produced the figures. D.V.-P., S.P. and V.Q. discussed the results and wrote this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Franco Vazza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
The file contains all the supplementary material for the paper. This includes ten supplementary discussion sections (A–J), Figs. 1–11 and Table 1.
Source data
Source Data Fig. 1
Data points for the upper and lower panels of Fig. 1 in the main text.
Source Data Fig. 2
Data points and error bars for the upper-left, upper-right, lower-left and lower-right panels in Fig. 2.
Source Data Fig. 3
Values for the colormap representation and for the lines shown in the left-hand and right-hand panels of Fig. 3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vallés-Pérez, D., Quilis, V. & Planelles, S. Cosmic accretion shocks as a tool to measure the dark matter mass of galaxy clusters. Nat Astron 8, 1195–1204 (2024). https://doi.org/10.1038/s41550-024-02303-x
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-024-02303-x
This article is cited by
-
Weighing galaxy clusters with shocks
Nature Astronomy (2024)


