Abstract
The aromatic molecule benzene is considered to be the essential building block for larger polycyclic aromatic hydrocarbons (PAHs) in space. Despite the importance of benzene in the formation of PAHs, the formation mechanisms of interstellar benzene are not well understood. A single ion–molecule reaction sequence is considered when modelling the formation of benzene in the interstellar medium, beginning with the protonation of acetylene. Although this process has been used to model the initial steps in the formation of PAHs, it has not been experimentally measured. To explore this reaction mechanism, we have carried out an experimental study of sequential ion–molecule reactions beginning with protonation of acetylene under single-collision conditions. Surprisingly, we found that the reaction sequence does not result in benzene but, instead, terminates at C6H5+, which is unreactive towards either acetylene or hydrogen. This result disproves the previously proposed mechanism for interstellar benzene formation, thus critically altering our understanding of interstellar PAH formation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All data are available in the text or in the Supplementary Information. Source data are provided with this paper.
References
Allamandola, L., Boersma, C., Lee, T., Bregman, J. & Temi, P. PAH spectroscopy from 1 to 5 μm. Astrophys. J. Lett. 917, L35 (2021).
Tielens, A. G. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).
McGuire, B. A. et al. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359, 202–205 (2018).
McGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021).
Burkhardt, A. M. et al. Discovery of the pure polycyclic aromatic hydrocarbon indene (c-C9H8) with GOTHAM observations of TMC-1. Astrophys. J. Lett. 913, L18 (2021).
Sita, M. L. et al. Discovery of interstellar 2-cynoindene (2–C9H7CN) in GOTHAM observations of TMC-1. Astrophys. J. Lett. 938, L12 (2022).
Cernicharo, J. et al. Pure hydrocarbon cycles in TMC-1: discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 649, L15 (2021).
Agúndez, M., Marcelino, N., Tercero, B. & Cernicharo, J. Aromatic cycles are widespread in cold clouds. Astron. Astrophys. 677, L13 (2023).
Cernicharo, J. et al. Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 546, L123 (2001).
Kraemer, K. E. et al. A post-AGB star in the Small Magellanic Cloud observed with the Spitzer infrared spectrograph. Astrophys. J. 652, L25 (2006).
Malek, S. E., Cami, J. & Bernard-Salas, J. The rich circumstellar chemistry of SMP LMC 11. Astrophys. J. 744, 16 (2011).
Schuhmann, M. et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov–Gerasimenko seen by ROSINA. Astron. Astrophys. 630, A31 (2019).
Koskinen, T., Moses, J., West, R., Guerlet, S. & Jouchoux, A. The detection of benzene in Saturn’s upper atmosphere. Geophys. Res. Lett. 43, 7895–7901 (2016).
Waite Jr, J. et al. The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).
Delsemme, A. The volatile fraction of the cometary nucleus. Icarus 24, 95–110 (1975).
Tabone, B. et al. A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star. Nat. Astron. 7, 805–814 (2023).
Arabhavi, A. et al. Abundant hydrocarbons in the disk around a very-low-mass star. Science 384, 1086–1090 (2024).
Berné, O., Montillaud, J. & Joblin, C. Top-down formation of fullerenes in the interstellar medium. Astron. Astrophys. 577, A133 (2015).
Woods, P. M., Millar, T., Zijlstra, A. & Herbst, E. The synthesis of benzene in the proto-planetary nebula CRL 618. Astrophys. J. 574, L167 (2002).
Jones, B. M. et al. Formation of benzene in the interstellar medium. Proc. Natl Acad. Sci. USA 108, 452–457 (2011).
Pentsak, E. O., Murga, M. S. & Ananikov, V. P. Role of acetylene in the chemical evolution of carbon complexity. ACS Earth Space Chem. 8, 798–856 (2024).
Chabot, M., Béroff, K., Dartois, E., Pino, T. & Godard, M. Coulomb explosion of polycyclic aromatic hydrocarbons induced by heavy cosmic rays: carbon chains production rates. Astrophys. J. 888, 17 (2019).
Rap, D. B., Schrauwen, J. G., Redlich, B. & Bruünken, S. Noncovalent interactions steer the formation of polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 146, 23022–23033 (2024).
Kaiser, R. I. & Hansen, N. An aromatic Universe–a physical chemistry perspective. J. Phys. Chem. A 125, 3826–3840 (2021).
Bierbaum, V., Le Page, V. & Snow, T. PAHs and the chemistry of the ISM. EAS Publ. Ser. 46, 427–440 (2011).
Lee, K. L. K., McGuire, B. A. & McCarthy, M. C. Gas-phase synthetic pathways to benzene and benzonitrile: a combined microwave and thermochemical investigation. Phys. Chem. Chem. Phys. 21, 2946–2956 (2019).
McEwan, M. J. et al. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513, 287 (1999).
Brill, F. W. & Eyler, J. R. Sequential ion–molecule reactions in acetylene. J. Phys. Chem. 85, 1091–1094 (1981).
Myher, J. & Harrison, A. Ion–molecule reactions in acetylene and acetylene–methane mixtures. Can. J. Chem. 46, 1755–1762 (1968).
Futrell, J. H. & Tiernan, T. O. Ionic reactions of unsaturated compounds. I. Polymerization of acetylene. J. Phys. Chem. 72, 158–164 (1968).
Anicich, V. G., Huntress Jr, W. T. & McEwan, M. J. Ion-molecule reactions of hydrocarbon ions in acetylene and hydrocyanic acid. J. Phys. Chem. 90, 2446–2450 (1986).
Knight, J., Freeman, C., McEwan, M., Anicich, V. & Huntress, W. A flow tube study of ion-molecule reactions of acetylene. J. Phys. Chem. 91, 3898–3902 (1987).
Eyler, J. R. & Campana, J. E. Gas-phase phenylium and acyclic [C6H5]+ isomers. Int. J. Mass Spectrom. 55, 171–188 (1984).
Giles, K., Adams, N. G. & Smith, D. A study of reactions of CnHm+ ions (n = 4, 5, 6; m = 0–6) with H2 and CO at 300 K and 80 K. Int. J. Mass Spectrom. 89, 303–317 (1989).
Contreras, C. S. & Salama, F. Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars. Astrophys. J. Suppl. Ser. 208, 6 (2013).
Fornarini, S. & Speranza, M. Is gaseous phenylium ion unreactive towards acetylene? J. Chem. Soc. Chem. Commun. 1985, 1692–1693 (1985).
Ausloos, P., Lias, S. G., Buckley, T. J. & Rogers, E. E. Concerning the formation and the kinetics of phenylium ions. Int. J. Mass Spectrom. 92, 65–77 (1989).
Soliman, A.-R. et al. Formation of complex organics in the gas phase by sequential reactions of acetylene with the phenylium ion. J. Phys. Chem. A 116, 8925–8933 (2012).
Petrie, S., Javahery, G. & Bohme, D. K. Gas-phase reactions of benzenoid hydrocarbon ions with hydrogen atoms and molecules: uncommon constraints to reactivity. J. Am. Chem. Soc. 114, 9205–9206 (1992).
Scott, G. B. et al.CmHn+ reactions with H and H2: an experimental study. J. Phys. Chem. A 101, 4973–4978 (1997).
Ascenzi, D. et al. Reactions of phenylium ions C6(H, D)5+ with D2. J. Chem. Phys. 119, 8366–8372 (2003).
Speranza, M., Sefcik, M. D., Henis, J. M. & Gaspar, P. P. Phenylium (C6H5+) ion-molecule reactions studied by ion cyclotron resonance spectroscopy. J. Am. Chem. Soc. 99, 5583–5589 (1977).
Lifshitz, C., Gibson, D. & Levsen, K. Structure of the gas-phase ion C6H5+. Int. J. Mass Spectrom. 35, 365–370 (1980).
Ascenzi, D., Cont, N., Guella, G., Franceschi, P. & Tosi, P. New insights into the reaction mechanisms of phenylium ions with benzene. J. Phys. Chem. A 111, 12513–12523 (2007).
Schröder, D., Schroeter, K., Zummack, W. & Schwarz, H. Charge inversion as a structural probe for C6H5+ and C6H6+⋅ cations. J. Am. Soc. Mass Spectrom. 10, 878–882 (1999).
Wiersma, S. D. et al. Ir photofragmentation of the phenyl cation: spectroscopy and fragmentation pathways. Phys. Chem. Chem. Phys. 23, 4334–4343 (2021).
Jacovella, U. et al. Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)—a plausible pathway to larger interstellar aromatics. Astron. Astrophys. 657, A85 (2022).
Rap, D. B. et al. Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory. Faraday Discuss. 245, 221–244 (2023).
Schmid, P. C., Greenberg, J., Miller, M. I., Loeffler, K. & Lewandowski, H. J. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev. Sci. Instrum. 88, 123107 (2017).
Milligan, D. B., Wilson, P. F., Freeman, C. G., Meot-Ner, M. & McEwan, M. J. Dissociative proton transfer reactions of H3+, N2H+, and H3O+ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications. J. Phys. Chem. A 106, 9745–9755 (2002).
Kim, J., Theard, L. & Huntress Jr, W. Reactions of excited and ground state H3+ ions with simple hydrides and hydrocarbons: collisional deactivation of vibrationally excited H3+ ions. Int. J. Mass Spectrom. 15, 223–244 (1974).
Crofton, M. W., Jagod, M.-F., Rehfuss, B. D. & Oka, T. Infrared spectroscopy of carbo-ions. V. Classical vs nonclassical structure of protonated acetylene C2H3+. J. Chem. Phys. 91, 5139–5153 (1989).
Douberly, G. E. et al. Infrared photodissociation spectroscopy of protonated acetylene and its clusters. J. Phys. Chem. A 112, 1897–1906 (2008).
Bogey, M., Cordonnier, M., Demuynck, C. & Destombes, J. Laboratory measurement of the millimeter and submillimeter wave spectrum of C2H3+. Astrophys. J. Lett. 399, L103–L105 (1992).
Peverati, R., Bera, P. P., Lee, T. J. & Head-Gordon, M. Insights into hydrocarbon chain and aromatic ring formation in the interstellar medium; computational study of the isomers of and their formation pathways. Astrophys. J. 830, 128 (2016).
Moon, C. J. et al. Formation of the C4Hn+ (n = 2–5) ions upon ionization of acetylene clusters in helium droplets. J. Chem. Phys. 158, 224307 (2023).
Dill, J. D., Schleyer, Pv. R. & Pople, J. A. Molecular orbital theory of the electronic structure of molecules. 31. Substituent stabilization of the phenyl cation. J. Am. Chem. Soc. 99, 1–8 (1977).
Shi, D. et al. Stability and isomerization reactions of phenyl cation C6H5+ isomers. Chem. Phys. 467, 13–20 (2016).
Muller, S. et al. Protonated acetylene in the z = 0.89 molecular absorber toward PKS 1830-211. Astron. Astrophys. 683, A62 (2024).
Opitz, S., Proch, D., Trickl, T. & Kompa, K. L. State-selective ionization of nitrogen by resonance-enhanced three- and four-photon excitation. Chem. Phys. 143, 305–323 (1990).
Singleton, J. H. Practical guide to the use of Bayard–Alpert ionization gauges. J. Vac. Sci. Technol. A 19, 1712–1719 (2001).
Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian Inc., 2016).
Schmid, P. et al. Isomer-selected ion–molecule reactions of acetylene cations with propyne and allene. Phys. Chem. Chem. Phys. 22, 20303–20310 (2020).
Acknowledgements
We thank L.-S. Wang and M.-A. Martin-Drummel for helpful discussions during the preparation of this manuscript. This work was supported by the National Science Foundation (Grant Nos. PHY-2317149 and CHE-1900294) and the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0323).
Author information
Authors and Affiliations
Contributions
Data collection and analysis were carried out by G.S.K. and C.Z.-M. All authors contributed to interpreting the results and writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Brett McGuire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1 and Figs. 1–4.
Source data
Source Data Fig. 3.
Raw data used to produce the plots in Fig. 3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kocheril, G.S., Zagorec-Marks, C. & Lewandowski, H.J. Termination of bottom-up interstellar aromatic ring formation at C6H5+. Nat Astron 9, 685–691 (2025). https://doi.org/10.1038/s41550-025-02504-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02504-y
This article is cited by
-
A detection of sulfur-bearing cyclic hydrocarbons in space
Nature Astronomy (2026)


