Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Termination of bottom-up interstellar aromatic ring formation at C6H5+

Abstract

The aromatic molecule benzene is considered to be the essential building block for larger polycyclic aromatic hydrocarbons (PAHs) in space. Despite the importance of benzene in the formation of PAHs, the formation mechanisms of interstellar benzene are not well understood. A single ion–molecule reaction sequence is considered when modelling the formation of benzene in the interstellar medium, beginning with the protonation of acetylene. Although this process has been used to model the initial steps in the formation of PAHs, it has not been experimentally measured. To explore this reaction mechanism, we have carried out an experimental study of sequential ion–molecule reactions beginning with protonation of acetylene under single-collision conditions. Surprisingly, we found that the reaction sequence does not result in benzene but, instead, terminates at C6H5+, which is unreactive towards either acetylene or hydrogen. This result disproves the previously proposed mechanism for interstellar benzene formation, thus critically altering our understanding of interstellar PAH formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed synthesis mechanism for benzene in ion–molecule reactions.
Fig. 2: Schematic of the experimental apparatus.
Fig. 3: Ion-reactant depletion and product growth for the sequential chain reactions starting with N2H+ + C2H2.
Fig. 4: Schematic diagram of the full series of sequential reactions.

Similar content being viewed by others

Data availability

All data are available in the text or in the Supplementary Information. Source data are provided with this paper.

References

  1. Allamandola, L., Boersma, C., Lee, T., Bregman, J. & Temi, P. PAH spectroscopy from 1 to 5 μm. Astrophys. J. Lett. 917, L35 (2021).

    Article  ADS  Google Scholar 

  2. Tielens, A. G. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).

    Article  ADS  Google Scholar 

  3. McGuire, B. A. et al. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359, 202–205 (2018).

    Article  ADS  Google Scholar 

  4. McGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021).

    Article  ADS  Google Scholar 

  5. Burkhardt, A. M. et al. Discovery of the pure polycyclic aromatic hydrocarbon indene (c-C9H8) with GOTHAM observations of TMC-1. Astrophys. J. Lett. 913, L18 (2021).

    Article  ADS  Google Scholar 

  6. Sita, M. L. et al. Discovery of interstellar 2-cynoindene (2–C9H7CN) in GOTHAM observations of TMC-1. Astrophys. J. Lett. 938, L12 (2022).

    Article  ADS  Google Scholar 

  7. Cernicharo, J. et al. Pure hydrocarbon cycles in TMC-1: discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 649, L15 (2021).

    Article  ADS  Google Scholar 

  8. Agúndez, M., Marcelino, N., Tercero, B. & Cernicharo, J. Aromatic cycles are widespread in cold clouds. Astron. Astrophys. 677, L13 (2023).

    Article  ADS  Google Scholar 

  9. Cernicharo, J. et al. Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 546, L123 (2001).

    Article  ADS  Google Scholar 

  10. Kraemer, K. E. et al. A post-AGB star in the Small Magellanic Cloud observed with the Spitzer infrared spectrograph. Astrophys. J. 652, L25 (2006).

    Article  ADS  Google Scholar 

  11. Malek, S. E., Cami, J. & Bernard-Salas, J. The rich circumstellar chemistry of SMP LMC 11. Astrophys. J. 744, 16 (2011).

    Article  ADS  Google Scholar 

  12. Schuhmann, M. et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov–Gerasimenko seen by ROSINA. Astron. Astrophys. 630, A31 (2019).

    Article  Google Scholar 

  13. Koskinen, T., Moses, J., West, R., Guerlet, S. & Jouchoux, A. The detection of benzene in Saturn’s upper atmosphere. Geophys. Res. Lett. 43, 7895–7901 (2016).

    Article  ADS  Google Scholar 

  14. Waite Jr, J. et al. The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).

    Article  ADS  Google Scholar 

  15. Delsemme, A. The volatile fraction of the cometary nucleus. Icarus 24, 95–110 (1975).

    Article  ADS  Google Scholar 

  16. Tabone, B. et al. A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star. Nat. Astron. 7, 805–814 (2023).

    Article  ADS  Google Scholar 

  17. Arabhavi, A. et al. Abundant hydrocarbons in the disk around a very-low-mass star. Science 384, 1086–1090 (2024).

    Article  ADS  Google Scholar 

  18. Berné, O., Montillaud, J. & Joblin, C. Top-down formation of fullerenes in the interstellar medium. Astron. Astrophys. 577, A133 (2015).

    Article  ADS  Google Scholar 

  19. Woods, P. M., Millar, T., Zijlstra, A. & Herbst, E. The synthesis of benzene in the proto-planetary nebula CRL 618. Astrophys. J. 574, L167 (2002).

    Article  ADS  Google Scholar 

  20. Jones, B. M. et al. Formation of benzene in the interstellar medium. Proc. Natl Acad. Sci. USA 108, 452–457 (2011).

    Article  ADS  Google Scholar 

  21. Pentsak, E. O., Murga, M. S. & Ananikov, V. P. Role of acetylene in the chemical evolution of carbon complexity. ACS Earth Space Chem. 8, 798–856 (2024).

    Article  ADS  Google Scholar 

  22. Chabot, M., Béroff, K., Dartois, E., Pino, T. & Godard, M. Coulomb explosion of polycyclic aromatic hydrocarbons induced by heavy cosmic rays: carbon chains production rates. Astrophys. J. 888, 17 (2019).

    Article  ADS  Google Scholar 

  23. Rap, D. B., Schrauwen, J. G., Redlich, B. & Bruünken, S. Noncovalent interactions steer the formation of polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 146, 23022–23033 (2024).

  24. Kaiser, R. I. & Hansen, N. An aromatic Universe–a physical chemistry perspective. J. Phys. Chem. A 125, 3826–3840 (2021).

    Article  Google Scholar 

  25. Bierbaum, V., Le Page, V. & Snow, T. PAHs and the chemistry of the ISM. EAS Publ. Ser. 46, 427–440 (2011).

    Article  Google Scholar 

  26. Lee, K. L. K., McGuire, B. A. & McCarthy, M. C. Gas-phase synthetic pathways to benzene and benzonitrile: a combined microwave and thermochemical investigation. Phys. Chem. Chem. Phys. 21, 2946–2956 (2019).

    Article  Google Scholar 

  27. McEwan, M. J. et al. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513, 287 (1999).

    Article  ADS  Google Scholar 

  28. Brill, F. W. & Eyler, J. R. Sequential ion–molecule reactions in acetylene. J. Phys. Chem. 85, 1091–1094 (1981).

    Article  Google Scholar 

  29. Myher, J. & Harrison, A. Ion–molecule reactions in acetylene and acetylene–methane mixtures. Can. J. Chem. 46, 1755–1762 (1968).

    Article  Google Scholar 

  30. Futrell, J. H. & Tiernan, T. O. Ionic reactions of unsaturated compounds. I. Polymerization of acetylene. J. Phys. Chem. 72, 158–164 (1968).

    Article  Google Scholar 

  31. Anicich, V. G., Huntress Jr, W. T. & McEwan, M. J. Ion-molecule reactions of hydrocarbon ions in acetylene and hydrocyanic acid. J. Phys. Chem. 90, 2446–2450 (1986).

    Article  Google Scholar 

  32. Knight, J., Freeman, C., McEwan, M., Anicich, V. & Huntress, W. A flow tube study of ion-molecule reactions of acetylene. J. Phys. Chem. 91, 3898–3902 (1987).

    Article  Google Scholar 

  33. Eyler, J. R. & Campana, J. E. Gas-phase phenylium and acyclic [C6H5]+ isomers. Int. J. Mass Spectrom. 55, 171–188 (1984).

    Article  ADS  Google Scholar 

  34. Giles, K., Adams, N. G. & Smith, D. A study of reactions of CnHm+ ions (n = 4, 5, 6; m = 0–6) with H2 and CO at 300 K and 80 K. Int. J. Mass Spectrom. 89, 303–317 (1989).

    Article  ADS  Google Scholar 

  35. Contreras, C. S. & Salama, F. Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars. Astrophys. J. Suppl. Ser. 208, 6 (2013).

    Article  ADS  Google Scholar 

  36. Fornarini, S. & Speranza, M. Is gaseous phenylium ion unreactive towards acetylene? J. Chem. Soc. Chem. Commun. 1985, 1692–1693 (1985).

  37. Ausloos, P., Lias, S. G., Buckley, T. J. & Rogers, E. E. Concerning the formation and the kinetics of phenylium ions. Int. J. Mass Spectrom. 92, 65–77 (1989).

    Article  ADS  Google Scholar 

  38. Soliman, A.-R. et al. Formation of complex organics in the gas phase by sequential reactions of acetylene with the phenylium ion. J. Phys. Chem. A 116, 8925–8933 (2012).

    Article  Google Scholar 

  39. Petrie, S., Javahery, G. & Bohme, D. K. Gas-phase reactions of benzenoid hydrocarbon ions with hydrogen atoms and molecules: uncommon constraints to reactivity. J. Am. Chem. Soc. 114, 9205–9206 (1992).

    Article  Google Scholar 

  40. Scott, G. B. et al.CmHn+ reactions with H and H2: an experimental study. J. Phys. Chem. A 101, 4973–4978 (1997).

    Article  Google Scholar 

  41. Ascenzi, D. et al. Reactions of phenylium ions C6(H, D)5+ with D2. J. Chem. Phys. 119, 8366–8372 (2003).

    Article  ADS  Google Scholar 

  42. Speranza, M., Sefcik, M. D., Henis, J. M. & Gaspar, P. P. Phenylium (C6H5+) ion-molecule reactions studied by ion cyclotron resonance spectroscopy. J. Am. Chem. Soc. 99, 5583–5589 (1977).

    Article  Google Scholar 

  43. Lifshitz, C., Gibson, D. & Levsen, K. Structure of the gas-phase ion C6H5+. Int. J. Mass Spectrom. 35, 365–370 (1980).

    ADS  Google Scholar 

  44. Ascenzi, D., Cont, N., Guella, G., Franceschi, P. & Tosi, P. New insights into the reaction mechanisms of phenylium ions with benzene. J. Phys. Chem. A 111, 12513–12523 (2007).

    Article  Google Scholar 

  45. Schröder, D., Schroeter, K., Zummack, W. & Schwarz, H. Charge inversion as a structural probe for C6H5+ and C6H6+ cations. J. Am. Soc. Mass Spectrom. 10, 878–882 (1999).

    Article  ADS  Google Scholar 

  46. Wiersma, S. D. et al. Ir photofragmentation of the phenyl cation: spectroscopy and fragmentation pathways. Phys. Chem. Chem. Phys. 23, 4334–4343 (2021).

    Article  Google Scholar 

  47. Jacovella, U. et al. Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)—a plausible pathway to larger interstellar aromatics. Astron. Astrophys. 657, A85 (2022).

    Article  Google Scholar 

  48. Rap, D. B. et al. Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory. Faraday Discuss. 245, 221–244 (2023).

    Article  ADS  Google Scholar 

  49. Schmid, P. C., Greenberg, J., Miller, M. I., Loeffler, K. & Lewandowski, H. J. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev. Sci. Instrum. 88, 123107 (2017).

  50. Milligan, D. B., Wilson, P. F., Freeman, C. G., Meot-Ner, M. & McEwan, M. J. Dissociative proton transfer reactions of H3+, N2H+, and H3O+ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications. J. Phys. Chem. A 106, 9745–9755 (2002).

    Article  Google Scholar 

  51. Kim, J., Theard, L. & Huntress Jr, W. Reactions of excited and ground state H3+ ions with simple hydrides and hydrocarbons: collisional deactivation of vibrationally excited H3+ ions. Int. J. Mass Spectrom. 15, 223–244 (1974).

    ADS  Google Scholar 

  52. Crofton, M. W., Jagod, M.-F., Rehfuss, B. D. & Oka, T. Infrared spectroscopy of carbo-ions. V. Classical vs nonclassical structure of protonated acetylene C2H3+. J. Chem. Phys. 91, 5139–5153 (1989).

    Article  ADS  Google Scholar 

  53. Douberly, G. E. et al. Infrared photodissociation spectroscopy of protonated acetylene and its clusters. J. Phys. Chem. A 112, 1897–1906 (2008).

    Article  Google Scholar 

  54. Bogey, M., Cordonnier, M., Demuynck, C. & Destombes, J. Laboratory measurement of the millimeter and submillimeter wave spectrum of C2H3+. Astrophys. J. Lett. 399, L103–L105 (1992).

    Article  ADS  Google Scholar 

  55. Peverati, R., Bera, P. P., Lee, T. J. & Head-Gordon, M. Insights into hydrocarbon chain and aromatic ring formation in the interstellar medium; computational study of the isomers of and their formation pathways. Astrophys. J. 830, 128 (2016).

    Article  ADS  Google Scholar 

  56. Moon, C. J. et al. Formation of the C4Hn+ (n = 2–5) ions upon ionization of acetylene clusters in helium droplets. J. Chem. Phys. 158, 224307 (2023).

  57. Dill, J. D., Schleyer, Pv. R. & Pople, J. A. Molecular orbital theory of the electronic structure of molecules. 31. Substituent stabilization of the phenyl cation. J. Am. Chem. Soc. 99, 1–8 (1977).

    Article  Google Scholar 

  58. Shi, D. et al. Stability and isomerization reactions of phenyl cation C6H5+ isomers. Chem. Phys. 467, 13–20 (2016).

    Article  Google Scholar 

  59. Muller, S. et al. Protonated acetylene in the z = 0.89 molecular absorber toward PKS 1830-211. Astron. Astrophys. 683, A62 (2024).

    Article  Google Scholar 

  60. Opitz, S., Proch, D., Trickl, T. & Kompa, K. L. State-selective ionization of nitrogen by resonance-enhanced three- and four-photon excitation. Chem. Phys. 143, 305–323 (1990).

    Article  Google Scholar 

  61. Singleton, J. H. Practical guide to the use of Bayard–Alpert ionization gauges. J. Vac. Sci. Technol. A 19, 1712–1719 (2001).

    Article  Google Scholar 

  62. Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian Inc., 2016).

  63. Schmid, P. et al. Isomer-selected ion–molecule reactions of acetylene cations with propyne and allene. Phys. Chem. Chem. Phys. 22, 20303–20310 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L.-S. Wang and M.-A. Martin-Drummel for helpful discussions during the preparation of this manuscript. This work was supported by the National Science Foundation (Grant Nos. PHY-2317149 and CHE-1900294) and the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0323).

Author information

Authors and Affiliations

Authors

Contributions

Data collection and analysis were carried out by G.S.K. and C.Z.-M. All authors contributed to interpreting the results and writing the manuscript.

Corresponding author

Correspondence to G. S. Kocheril.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Brett McGuire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–4.

Source data

Source Data Fig. 3.

Raw data used to produce the plots in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocheril, G.S., Zagorec-Marks, C. & Lewandowski, H.J. Termination of bottom-up interstellar aromatic ring formation at C6H5+. Nat Astron 9, 685–691 (2025). https://doi.org/10.1038/s41550-025-02504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02504-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing