Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perihelion history and atmospheric survival as primary drivers of the Earth’s meteorite record

Abstract

Models predict that more than half of all impacting meteoroids should be carbonaceous, reflecting the abundance of carbon-rich asteroids in the main belt and near-Earth space. Yet carbonaceous chondrites represent only about 4% of meteorites recovered worldwide. Here we analyse 7,982 meteoroid impacts and 540 potential meteorite falls from 19 global observation networks and demonstrate that intense thermal stress at low perihelion distances coupled with the filtering effect of Earth’s atmosphere explains this mismatch. Meteoroids repeatedly subjected to intense thermal cycling near the Sun fracture and weaken, removing the most friable objects even before atmospheric entry. Our data also show that tidally disrupted meteoroid streams produce especially fragile fragments that rarely survive to the ground. Consequently, compact, higher-strength, thermally cycled bodies dominate the meteorite record. These findings reconcile the predicted carbonaceous flux with its scarcity in collections, underscoring how orbital evolution and atmospheric filtering shape the materials that reach Earth’s surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orbital distribution of 7,982 impacts detected by EDMOND, CAMS, GMN, FRIPON and EFN networks.
Fig. 2: Apparent initial velocity distribution for sporadic asteroidal top-of-the-atmosphere population versus meteorite fall populations.
Fig. 3: Orbital density heatmaps comparing sporadic >10 g top-of-atmosphere asteroidal impacts and >1 g meteorite falls.

Similar content being viewed by others

Data availability

The fireball data for the top-of-the-atmosphere population and meteorite falls are available via Zenodo at https://doi.org/10.5281/zenodo.14017585 (ref. 97).

Code availability

Available upon request from the authors.

References

  1. Ceplecha, Z. et al. Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998).

    Article  ADS  Google Scholar 

  2. Devillepoix, H. A. R. et al. A Global Fireball Observatory. Planet. Space Sci. 191, 105036 (2020).

    Article  Google Scholar 

  3. Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).

    Article  Google Scholar 

  4. Vida, D. et al. The global meteor network–methodology and first results. Mon. Not. R. Astron. Soc. 506, 5046–5074 (2021).

    Article  ADS  Google Scholar 

  5. Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017–2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A157 (2022).

    Article  Google Scholar 

  6. Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    Article  ADS  Google Scholar 

  7. Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).

    Article  Google Scholar 

  8. Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).

    Article  Google Scholar 

  9. DeMeo, F. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).

    Article  ADS  Google Scholar 

  10. Brož, M. et al. Source regions of carbonaceous meteorites and near-Earth objects. Astron. Astrophys. 689, A183 (2024).

    Article  Google Scholar 

  11. McMullan, S. et al. The Winchcombe fireball—that lucky survivor. Meteorit. Planet. Sci. 59, 927–947 (2024).

    Article  ADS  Google Scholar 

  12. Kornos, L. et al. Confirmation and characterization of IAU temporary meteor showers in EDMOND database. In Proc. Meteoroids 2013 Conference (eds Jopek, T. J. et al.) 119–125 (A.M. Univ., 2014).

  13. Rudawska, R. et al. Independent identification of meteor showers in EDMOND database. Planet. Space Sci. 118, 38–47 (2015).

    Article  ADS  Google Scholar 

  14. Jenniskens, P. et al. The established meteor showers as observed by CAMS. Icarus 266, 331–354 (2016).

    Article  ADS  Google Scholar 

  15. Jenniskens, P. et al. CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers. Icarus 216, 40–61 (2011).

    Article  ADS  Google Scholar 

  16. Fries, M. & Fries, J. Doppler weather radar as a meteorite recovery tool. Meteorit. Planet. Sci. 45, 1476–1487 (2010).

    Article  ADS  Google Scholar 

  17. Anderson, S. L. et al. Successful recovery of an observed meteorite fall using drones and machine learning. Astrophys. J. Lett. 930, L25 (2022).

    Article  ADS  Google Scholar 

  18. Sansom, E. K. et al. Determining fireball fates using the αβ criterion. Astrophys. J. 885, 115 (2019).

    Article  ADS  Google Scholar 

  19. Brown, P. et al. Meteorites from meteor showers: a case study of the Taurids. Meteorit. Planet. Sci. 48, 270–288 (2013).

    Article  ADS  Google Scholar 

  20. Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. in Hazards Due to Comets and Asteroids (ed. Gehrels, T.) Ch. 13 (Univ. Arizona Press, 1994).

  21. Gladman, B. Destination: Earth. Martian meteorite delivery. Icarus 130, 228–246 (1997).

    Article  ADS  Google Scholar 

  22. Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).

    Article  ADS  Google Scholar 

  23. Granvik, M. et al. Super-catastrophic disruption of asteroids at small perihelion distances. Nature 530, 303–306 (2016).

    Article  ADS  Google Scholar 

  24. Wiegert, P. et al. Supercatastrophic disruption of asteroids in the context of SOHO comet, fireball, and meteor observations. Astron. J. 159, 143 (2020).

    Article  ADS  Google Scholar 

  25. Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-earth objects. Icarus 312, 181–207 (2018).

    Article  ADS  Google Scholar 

  26. Toliou, A., Granvik, M. & Tsirvoulis, G. Minimum perihelion distances and associated dwell times for near-Earth asteroids. Mon. Not. R. Astron. Soc. 506, 3301–3312 (2021).

    Article  ADS  Google Scholar 

  27. Molaro, J. et al. In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface. Nat. Commun. 11, 2913 (2020).

    Article  ADS  Google Scholar 

  28. Lucchetti, A. et al. Fast boulder fracturing by thermal fatigue detected on stony asteroids. Nat. Commun. 15, 6206 (2024).

    Article  Google Scholar 

  29. Hazeli, K. et al. The origins of asteroidal rock disaggregation: interplay of thermal fatigue and microstructure. Icarus 304, 172–182 (2018).

    Article  ADS  Google Scholar 

  30. Libourel, G. et al. Network of thermal cracks in meteorites due to temperature variations: new experimental evidence and implications for asteroid surfaces. Mon. Not. R. Astron. Soc. 500, 1905–1920 (2021).

    Article  ADS  Google Scholar 

  31. Graves, K. J., Minton, D. A., Molaro, J. L. & Hirabayashi, M. Resurfacing asteroids from thermally induced surface degradation. Icarus 322, 1–12 (2019).

    Article  ADS  Google Scholar 

  32. Toliou, A. & Granvik, M. Resonant mechanisms that produce near-sun asteroids. Mon. Not. R. Astron. Soc. 521, 4819–4837 (2023).

    Article  ADS  Google Scholar 

  33. Shober, P. M. et al. Comparing the dynamics of Jupiter-family comets and comet-like fireballs. Astron. Astrophys. 687, A181 (2024).

    Article  Google Scholar 

  34. Schunová, E. et al. Properties and evolution of neo families created by tidal disruption at Earth. Icarus 238, 156–169 (2014).

    Article  ADS  Google Scholar 

  35. Jopek, T. J. The orbital clusters among the near-Earth asteroids. Mon. Not. R. Astron. Soc. 494, 680–693 (2020).

    Article  ADS  Google Scholar 

  36. Granvik, M. & Walsh, K. J. Tidal disruption of near-Earth asteroids during close encounters with terrestrial planets. Astrophys. J. Lett. 960, L9 (2024).

    Article  ADS  Google Scholar 

  37. Shober, P. M., Courtot, A. & Vaubaillon, J. Near-Earth stream decoherence revisited: the limits of orbital similarity. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202452123 (2024).

  38. Halliday, I. Detection of a meteorite “stream”: observations of a second meteorite fall from the orbit of the Innisfree chondrite. Icarus 69, 550–556 (1987).

    Article  ADS  Google Scholar 

  39. Pauls, A. & Gladman, B. Decoherence time scales for “meteoroid streams”. Meteorit. Planet. Sci. 40, 1241–1256 (2005).

    Article  ADS  Google Scholar 

  40. Koten, P. et al. Search for faint meteors on the orbits of Príbram and Neuschwanstein meteorites. Icarus 239, 244–252 (2014).

    Article  ADS  Google Scholar 

  41. Borovička, J., Spurnỳ, P. & Shrbenỳ, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).

    Article  ADS  Google Scholar 

  42. Borovička, J., Popova, O. & Spurnỳ, P. The Maribo CM2 meteorite fall-survival of weak material at high entry speed. Meteorit. Planet. Sci. 54, 1024–1041 (2019).

    Article  ADS  Google Scholar 

  43. Flynn, G. J., Consolmagno, G. J., Brown, P. & Macke, R. J. Physical properties of the stone meteorites: implications for the properties of their parent bodies. Geochem. J. 78, 269–298 (2018).

    Article  Google Scholar 

  44. Trigo-Rodriguez, J. M. & Blum, J. Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planet. Space Sci. 57, 243–249 (2009).

    Article  ADS  Google Scholar 

  45. Genge, M. J., Van Ginneken, M. & Suttle, M. D. Micrometeorites: insights into the flux, sources and atmospheric entry of extraterrestrial dust at earth. Planet. Space Sci. 187, 104900 (2020).

    Article  Google Scholar 

  46. Blum, J., Schräpler, R., Davidsson, B. J. & Trigo-Rodriguez, J. M. The physics of protoplanetesimal dust agglomerates. i. Mechanical properties and relations to primitive bodies in the Solar System. Astrophys. J. 652, 1768 (2006).

    Article  ADS  Google Scholar 

  47. Shober, P. M., Caffee, M. W. & Bland, P. A. Cosmic-ray exposure age accumulated in near-Earth space: a carbonaceous chondrite case study. Meteorit. Planet. Sci. https://doi.org/10.1111/maps.14246 (2024).

  48. Turner, S. et al. Carbonaceous chondrite meteorites experienced fluid flow within the past million years. Science 371, 164–167 (2021).

    Article  ADS  Google Scholar 

  49. Grott, M. et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nat. Astron. 3, 971–976 (2019).

    Article  ADS  Google Scholar 

  50. Rozitis, B. et al. Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator. Sci. Adv. 6, eabc3699 (2020).

    Article  ADS  Google Scholar 

  51. Yada, T. et al. Ryugu: a brand-new planetary sample returned from a C-type asteroid. Nat. Astron 6, 214–220 (2022).

    Article  ADS  Google Scholar 

  52. Lauretta, D. S. et al. Asteroid (101955) Bennu in the laboratory: properties of the sample collected by OSIRIS-REx. Meteorit. Planet. Sci. 59, 2453–2486 (2024).

    Article  Google Scholar 

  53. Cambioni, S. et al. Fine-regolith production on asteroids controlled by rock porosity. Nature 598, 49–52 (2021).

    Article  ADS  Google Scholar 

  54. Jenniskens, P. 2003 EH1 is the Quadrantid shower parent comet. Astron. J. 127, 3018 (2004).

    Article  ADS  Google Scholar 

  55. Borovička, J. & Charvát, Z. Meteosat observation of the atmospheric entry of 2008 TC over Sudan and the associated dust cloud. Astron. Astrophys. 507, 1015–1022 (2009).

    Article  ADS  Google Scholar 

  56. Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).

    Article  ADS  Google Scholar 

  57. Loehle, S., Vaubaillon, J., Matlovič, P. & Tóth, J. Meteorite material luminous efficiencies from ground testing of meteoroid entry. Icarus 407, 115817 (2024).

    Article  Google Scholar 

  58. Vaubaillon, J. et al. UV spectroscopy of artificial meteors (200–400 nm). Icarus 410, 115906 (2024).

    Article  Google Scholar 

  59. Matlovič, P. et al. Spectral properties of ablating meteorite samples for improved meteoroid composition diagnostics. Astron. Astrophys. 689, A323 (2024).

    Article  Google Scholar 

  60. Borovička, J., Spurnỳ, P. & Shrbenỳ, L. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017–2018. II. Analysis of orbital and physical properties of centimeter-sized meteoroids. Astron. Astrophys. 667, A158 (2022).

  61. Spurnỳ, P., Oberst, J. & Heinlein, D. Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Príbram chondrite. Nature 423, 151–153 (2003).

    Article  ADS  Google Scholar 

  62. Spurnỳ, P. et al. Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016. Planet. Space Sci. 143, 192–198 (2017).

    Article  ADS  Google Scholar 

  63. Spurnỳ, P., Borovička, J. & Shrbenỳ, L. The Žďárnad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).

    Article  ADS  Google Scholar 

  64. Borovicka, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astr. Inst. Czechosl. 41, 391–396 (1990).

    ADS  Google Scholar 

  65. Pecina, P. & Ceplecha, Z. New aspects in single-body meteor physics. Bull. Astr. Inst. Czechosl. 34, 102–121 (1983).

    ADS  Google Scholar 

  66. Ceplecha, Z. Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bull. Astr. Inst. Czechosl. 38, 222–234 (1987).

    ADS  Google Scholar 

  67. SonotaCo. A meteor shower catalog based on video observations in 2007–2008. WGN 37, 55–62 (2009).

  68. Anghel, S., Birlan, M., Nedelcu, D.-A. & Boaca, I. Photometric calibration of Moroi all-sky cameras: introduction and first results. Rom. Astron. J. 29, 189–199 (2019).

    ADS  Google Scholar 

  69. Jeanne, S. et al. Calibration of fish-eye lens and error estimation on fireball trajectories: application to the FRIPON network. Astron. Astrophys. 627, A78 (2019).

    Article  Google Scholar 

  70. Jeanne, S. Méthode d’analyse statistique appliquée au réseau d’observation européen des météores FRIPON. PhD thesis, Université Paris Sciences et Lettres (2020).

  71. Vida, D. et al. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2020).

    Article  ADS  Google Scholar 

  72. Gural, P. S. A new method of meteor trajectory determination applied to multiple unsynchronized video cameras. Meteorit. Planet. Sci. 47, 1405–1418 (2012).

    Article  ADS  Google Scholar 

  73. Weryk, R. J. & Brown, P. G. Simultaneous radar and video meteors. I: Metric comparisons. Planet. Space Sci. 62, 132–152 (2012).

    Article  ADS  Google Scholar 

  74. Howie, R. M. et al. How to build a continental scale fireball camera network. Exp. Astron. 43, 237–266 (2017).

    Article  ADS  Google Scholar 

  75. Howie, R. M. et al. Submillisecond fireball timing using de Bruijn timecodes. Meteorit. Planet. Sci. 52, 1669–1682 (2017).

    Article  ADS  Google Scholar 

  76. Devillepoix, H. A. et al. Observation of metre-scale impactors by the Desert Fireball Network. Mon. Not. R. Astron. Soc. 483, 5166–5178 (2019).

    Article  ADS  Google Scholar 

  77. Sansom, E. K. et al. A novel approach to fireball modeling: the observable and the calculated. Meteorit. Planet. Sci. 50, 1423–1435 (2015).

    Article  ADS  Google Scholar 

  78. King, A. J. et al. The Winchcombe meteorite, a unique and pristine witness from the outer solar system. Sci. Adv. 8, eabq3925 (2022).

    Article  Google Scholar 

  79. Shober, P. M. et al. Arpu kuilpu: an H5 from the outer main belt. Meteorit. Planet. Sci. 57, 1146–1157 (2022).

    Article  ADS  Google Scholar 

  80. Devillepoix, H. A. R. et al. Trajectory, recovery, and orbital history of the madura cave meteorite. Meteorit. Planet. Sci. 57, 1328–1338 (2022).

    Article  ADS  Google Scholar 

  81. Revelle, D. & Ceplecha, Z. Bolide physical theory with application to PN and EN fireballs. In Proc. Meteoroids 2001 Conference (ed. Warmbein, B.) 507–512 (ESA, 2001).

  82. Verniani, F. An analysis of the physical parameters of 5759 faint radio meteors. J. Geophys. Res. 78, 8429–8462 (1973).

    Article  ADS  Google Scholar 

  83. Hughes, D. W. The Perseid meteor shower. Earth Moon Planets 68, 31–70 (1995).

    Article  ADS  Google Scholar 

  84. Spurnỳ, P., Borovička, J., Mucke, H. & Svoreň, J. Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies. Astron. Astrophys. 605, A68 (2017).

  85. Ceplecha, Z. Luminous efficiency based on photographic observations of the Lost City fireball and implications for the influx of interplanetary bodies onto Earth. Astron. Astrophys. 311, 329–332 (1996).

    ADS  Google Scholar 

  86. Anghel, S. et al. Energy signature of ton TNT-class impacts: analysis of the 2018 December 22 fireball over Western Pyrenees. Mon. Not. R. Astron. Soc. 508, 5716–5733 (2021).

    Article  ADS  Google Scholar 

  87. Nemtchinov, I. et al. Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130, 259–274 (1997).

    Article  ADS  Google Scholar 

  88. Gritsevich, M. & Stulov, V. Extra-atmospheric masses of the Canadian network bolides. Sol. Syst. Res. 40, 477–484 (2006).

    Article  ADS  Google Scholar 

  89. Gritsevich, M. I. Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Sol. Syst. Res. 41, 509–514 (2007).

    Article  ADS  Google Scholar 

  90. Moreno-Ibáñez, M., Gritsevich, M. & Trigo-Rodríguez, J. M. New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015).

    Article  ADS  Google Scholar 

  91. Shober, P. M. et al. The main asteroid belt: the primary source of debris on comet-like orbits. Planet. Sci. J. 2, 98 (2021).

    Article  Google Scholar 

  92. Valsecchi, G., Jopek, T. & Froeschlé, C. Meteoroid stream identification: a new approach. I. Theory. Mon. Not. R. Astron. Soc. 304, 743–750 (1999).

    Article  ADS  Google Scholar 

  93. Shober, P. M. & Vaubaillon, J. A generalizable method for estimating meteor shower false positives. Astron. Astrophys. 686, A130 (2024).

    Article  ADS  Google Scholar 

  94. Tancredi, G. A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234, 66–80 (2014).

    Article  ADS  Google Scholar 

  95. Jopek, T. J. Remarks on the meteor orbital similarity D-criterion. Icarus 106, 603–607 (1993).

    Article  ADS  Google Scholar 

  96. Pokornỳ, P. & Vokrouhlickỳ, D. Öpik-type collision probability for high-inclination orbits: targets on eccentric orbits. Icarus 226, 682–693 (2013).

    Article  ADS  Google Scholar 

  97. Shober, P. Debiased meteor and possible meteorite dropping fireballs observed by EFN, EDMOND, CAMS, GMN, FRIPON, GFO. Zenodo https://doi.org/10.5281/zenodo.14017585 (2025).

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 945298 ParisRegionFP (P.M.S.) and grant no. 101150536 (S.A.). The Global Fireball Observatory and data pipeline is enabled by the support of the Australian Research Council (grant nos. DP230100301 and LE170100106) (P.M.S., H.A.R.D., S.E.D., E.K.S., P.B.). FRIPON was initiated by funding from ANR (grant no. 13-BS05-0009-03), carried by the Paris Observatory, Muséum National d’Histoire Naturelle, Paris-Saclay University and Institut Pythéas (LAM-CEREGE). Vigie-Ciel was part of the 65 Millions d’Observateurs project, carried by the Muséum National d’Histoire Naturelle and funded by the French Investissements d’Avenir programme. FRIPON data are hosted and processed at Institut Pythéas SIP (Service Informatique Pythéas), and a mirror is hosted at LTE (Le Laboratoire Temps Espace/Paris Observatory) (P.M.S., J.V., S.A., F.C., B.Z., P.V.).

Author information

Authors and Affiliations

Authors

Contributions

P.M.S. collected the open-access data sources, removed the cometary components, applied the αβ methodology, debiased the FRIPON dataset, estimated the masses for the CAMS/EDMOND datasets and did the statistical significance analysis of the differences between the orbital distributions. S.A. calculated the photometric masses for the FRIPON dataset. P.M.S., H.A.R.D., J.V., S.E.D. and S.A. assisted with the data interpretation. E.K.S., H.A.R.D. and P.B. facilitated the management, collection and reduction of the GFO dataset. P.M.S., S.A., F.C., J.V., B.Z. and P.V. facilitated the management, collection and reduction of the FRIPON observations. P.M.S., H.A.R.D., J.V., S.E.D., S.A. and P.V. assisted with the paper revisions.

Corresponding author

Correspondence to Patrick M. Shober.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ashley King and Josep Trigo-Rodriguez for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and discussion sections 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shober, P.M., Devillepoix, H.A.R., Vaubaillon, J. et al. Perihelion history and atmospheric survival as primary drivers of the Earth’s meteorite record. Nat Astron 9, 799–812 (2025). https://doi.org/10.1038/s41550-025-02526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02526-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing