Abstract
Models predict that more than half of all impacting meteoroids should be carbonaceous, reflecting the abundance of carbon-rich asteroids in the main belt and near-Earth space. Yet carbonaceous chondrites represent only about 4% of meteorites recovered worldwide. Here we analyse 7,982 meteoroid impacts and 540 potential meteorite falls from 19 global observation networks and demonstrate that intense thermal stress at low perihelion distances coupled with the filtering effect of Earth’s atmosphere explains this mismatch. Meteoroids repeatedly subjected to intense thermal cycling near the Sun fracture and weaken, removing the most friable objects even before atmospheric entry. Our data also show that tidally disrupted meteoroid streams produce especially fragile fragments that rarely survive to the ground. Consequently, compact, higher-strength, thermally cycled bodies dominate the meteorite record. These findings reconcile the predicted carbonaceous flux with its scarcity in collections, underscoring how orbital evolution and atmospheric filtering shape the materials that reach Earth’s surface.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
The fireball data for the top-of-the-atmosphere population and meteorite falls are available via Zenodo at https://doi.org/10.5281/zenodo.14017585 (ref. 97).
Code availability
Available upon request from the authors.
References
Ceplecha, Z. et al. Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998).
Devillepoix, H. A. R. et al. A Global Fireball Observatory. Planet. Space Sci. 191, 105036 (2020).
Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).
Vida, D. et al. The global meteor network–methodology and first results. Mon. Not. R. Astron. Soc. 506, 5046–5074 (2021).
Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017–2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A157 (2022).
Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).
DeMeo, F. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).
Brož, M. et al. Source regions of carbonaceous meteorites and near-Earth objects. Astron. Astrophys. 689, A183 (2024).
McMullan, S. et al. The Winchcombe fireball—that lucky survivor. Meteorit. Planet. Sci. 59, 927–947 (2024).
Kornos, L. et al. Confirmation and characterization of IAU temporary meteor showers in EDMOND database. In Proc. Meteoroids 2013 Conference (eds Jopek, T. J. et al.) 119–125 (A.M. Univ., 2014).
Rudawska, R. et al. Independent identification of meteor showers in EDMOND database. Planet. Space Sci. 118, 38–47 (2015).
Jenniskens, P. et al. The established meteor showers as observed by CAMS. Icarus 266, 331–354 (2016).
Jenniskens, P. et al. CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers. Icarus 216, 40–61 (2011).
Fries, M. & Fries, J. Doppler weather radar as a meteorite recovery tool. Meteorit. Planet. Sci. 45, 1476–1487 (2010).
Anderson, S. L. et al. Successful recovery of an observed meteorite fall using drones and machine learning. Astrophys. J. Lett. 930, L25 (2022).
Sansom, E. K. et al. Determining fireball fates using the α–β criterion. Astrophys. J. 885, 115 (2019).
Brown, P. et al. Meteorites from meteor showers: a case study of the Taurids. Meteorit. Planet. Sci. 48, 270–288 (2013).
Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. in Hazards Due to Comets and Asteroids (ed. Gehrels, T.) Ch. 13 (Univ. Arizona Press, 1994).
Gladman, B. Destination: Earth. Martian meteorite delivery. Icarus 130, 228–246 (1997).
Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).
Granvik, M. et al. Super-catastrophic disruption of asteroids at small perihelion distances. Nature 530, 303–306 (2016).
Wiegert, P. et al. Supercatastrophic disruption of asteroids in the context of SOHO comet, fireball, and meteor observations. Astron. J. 159, 143 (2020).
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-earth objects. Icarus 312, 181–207 (2018).
Toliou, A., Granvik, M. & Tsirvoulis, G. Minimum perihelion distances and associated dwell times for near-Earth asteroids. Mon. Not. R. Astron. Soc. 506, 3301–3312 (2021).
Molaro, J. et al. In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface. Nat. Commun. 11, 2913 (2020).
Lucchetti, A. et al. Fast boulder fracturing by thermal fatigue detected on stony asteroids. Nat. Commun. 15, 6206 (2024).
Hazeli, K. et al. The origins of asteroidal rock disaggregation: interplay of thermal fatigue and microstructure. Icarus 304, 172–182 (2018).
Libourel, G. et al. Network of thermal cracks in meteorites due to temperature variations: new experimental evidence and implications for asteroid surfaces. Mon. Not. R. Astron. Soc. 500, 1905–1920 (2021).
Graves, K. J., Minton, D. A., Molaro, J. L. & Hirabayashi, M. Resurfacing asteroids from thermally induced surface degradation. Icarus 322, 1–12 (2019).
Toliou, A. & Granvik, M. Resonant mechanisms that produce near-sun asteroids. Mon. Not. R. Astron. Soc. 521, 4819–4837 (2023).
Shober, P. M. et al. Comparing the dynamics of Jupiter-family comets and comet-like fireballs. Astron. Astrophys. 687, A181 (2024).
Schunová, E. et al. Properties and evolution of neo families created by tidal disruption at Earth. Icarus 238, 156–169 (2014).
Jopek, T. J. The orbital clusters among the near-Earth asteroids. Mon. Not. R. Astron. Soc. 494, 680–693 (2020).
Granvik, M. & Walsh, K. J. Tidal disruption of near-Earth asteroids during close encounters with terrestrial planets. Astrophys. J. Lett. 960, L9 (2024).
Shober, P. M., Courtot, A. & Vaubaillon, J. Near-Earth stream decoherence revisited: the limits of orbital similarity. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202452123 (2024).
Halliday, I. Detection of a meteorite “stream”: observations of a second meteorite fall from the orbit of the Innisfree chondrite. Icarus 69, 550–556 (1987).
Pauls, A. & Gladman, B. Decoherence time scales for “meteoroid streams”. Meteorit. Planet. Sci. 40, 1241–1256 (2005).
Koten, P. et al. Search for faint meteors on the orbits of Príbram and Neuschwanstein meteorites. Icarus 239, 244–252 (2014).
Borovička, J., Spurnỳ, P. & Shrbenỳ, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).
Borovička, J., Popova, O. & Spurnỳ, P. The Maribo CM2 meteorite fall-survival of weak material at high entry speed. Meteorit. Planet. Sci. 54, 1024–1041 (2019).
Flynn, G. J., Consolmagno, G. J., Brown, P. & Macke, R. J. Physical properties of the stone meteorites: implications for the properties of their parent bodies. Geochem. J. 78, 269–298 (2018).
Trigo-Rodriguez, J. M. & Blum, J. Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planet. Space Sci. 57, 243–249 (2009).
Genge, M. J., Van Ginneken, M. & Suttle, M. D. Micrometeorites: insights into the flux, sources and atmospheric entry of extraterrestrial dust at earth. Planet. Space Sci. 187, 104900 (2020).
Blum, J., Schräpler, R., Davidsson, B. J. & Trigo-Rodriguez, J. M. The physics of protoplanetesimal dust agglomerates. i. Mechanical properties and relations to primitive bodies in the Solar System. Astrophys. J. 652, 1768 (2006).
Shober, P. M., Caffee, M. W. & Bland, P. A. Cosmic-ray exposure age accumulated in near-Earth space: a carbonaceous chondrite case study. Meteorit. Planet. Sci. https://doi.org/10.1111/maps.14246 (2024).
Turner, S. et al. Carbonaceous chondrite meteorites experienced fluid flow within the past million years. Science 371, 164–167 (2021).
Grott, M. et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nat. Astron. 3, 971–976 (2019).
Rozitis, B. et al. Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator. Sci. Adv. 6, eabc3699 (2020).
Yada, T. et al. Ryugu: a brand-new planetary sample returned from a C-type asteroid. Nat. Astron 6, 214–220 (2022).
Lauretta, D. S. et al. Asteroid (101955) Bennu in the laboratory: properties of the sample collected by OSIRIS-REx. Meteorit. Planet. Sci. 59, 2453–2486 (2024).
Cambioni, S. et al. Fine-regolith production on asteroids controlled by rock porosity. Nature 598, 49–52 (2021).
Jenniskens, P. 2003 EH1 is the Quadrantid shower parent comet. Astron. J. 127, 3018 (2004).
Borovička, J. & Charvát, Z. Meteosat observation of the atmospheric entry of 2008 TC over Sudan and the associated dust cloud. Astron. Astrophys. 507, 1015–1022 (2009).
Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).
Loehle, S., Vaubaillon, J., Matlovič, P. & Tóth, J. Meteorite material luminous efficiencies from ground testing of meteoroid entry. Icarus 407, 115817 (2024).
Vaubaillon, J. et al. UV spectroscopy of artificial meteors (200–400 nm). Icarus 410, 115906 (2024).
Matlovič, P. et al. Spectral properties of ablating meteorite samples for improved meteoroid composition diagnostics. Astron. Astrophys. 689, A323 (2024).
Borovička, J., Spurnỳ, P. & Shrbenỳ, L. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017–2018. II. Analysis of orbital and physical properties of centimeter-sized meteoroids. Astron. Astrophys. 667, A158 (2022).
Spurnỳ, P., Oberst, J. & Heinlein, D. Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Príbram chondrite. Nature 423, 151–153 (2003).
Spurnỳ, P. et al. Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016. Planet. Space Sci. 143, 192–198 (2017).
Spurnỳ, P., Borovička, J. & Shrbenỳ, L. The Žďárnad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).
Borovicka, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astr. Inst. Czechosl. 41, 391–396 (1990).
Pecina, P. & Ceplecha, Z. New aspects in single-body meteor physics. Bull. Astr. Inst. Czechosl. 34, 102–121 (1983).
Ceplecha, Z. Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bull. Astr. Inst. Czechosl. 38, 222–234 (1987).
SonotaCo. A meteor shower catalog based on video observations in 2007–2008. WGN 37, 55–62 (2009).
Anghel, S., Birlan, M., Nedelcu, D.-A. & Boaca, I. Photometric calibration of Moroi all-sky cameras: introduction and first results. Rom. Astron. J. 29, 189–199 (2019).
Jeanne, S. et al. Calibration of fish-eye lens and error estimation on fireball trajectories: application to the FRIPON network. Astron. Astrophys. 627, A78 (2019).
Jeanne, S. Méthode d’analyse statistique appliquée au réseau d’observation européen des météores FRIPON. PhD thesis, Université Paris Sciences et Lettres (2020).
Vida, D. et al. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2020).
Gural, P. S. A new method of meteor trajectory determination applied to multiple unsynchronized video cameras. Meteorit. Planet. Sci. 47, 1405–1418 (2012).
Weryk, R. J. & Brown, P. G. Simultaneous radar and video meteors. I: Metric comparisons. Planet. Space Sci. 62, 132–152 (2012).
Howie, R. M. et al. How to build a continental scale fireball camera network. Exp. Astron. 43, 237–266 (2017).
Howie, R. M. et al. Submillisecond fireball timing using de Bruijn timecodes. Meteorit. Planet. Sci. 52, 1669–1682 (2017).
Devillepoix, H. A. et al. Observation of metre-scale impactors by the Desert Fireball Network. Mon. Not. R. Astron. Soc. 483, 5166–5178 (2019).
Sansom, E. K. et al. A novel approach to fireball modeling: the observable and the calculated. Meteorit. Planet. Sci. 50, 1423–1435 (2015).
King, A. J. et al. The Winchcombe meteorite, a unique and pristine witness from the outer solar system. Sci. Adv. 8, eabq3925 (2022).
Shober, P. M. et al. Arpu kuilpu: an H5 from the outer main belt. Meteorit. Planet. Sci. 57, 1146–1157 (2022).
Devillepoix, H. A. R. et al. Trajectory, recovery, and orbital history of the madura cave meteorite. Meteorit. Planet. Sci. 57, 1328–1338 (2022).
Revelle, D. & Ceplecha, Z. Bolide physical theory with application to PN and EN fireballs. In Proc. Meteoroids 2001 Conference (ed. Warmbein, B.) 507–512 (ESA, 2001).
Verniani, F. An analysis of the physical parameters of 5759 faint radio meteors. J. Geophys. Res. 78, 8429–8462 (1973).
Hughes, D. W. The Perseid meteor shower. Earth Moon Planets 68, 31–70 (1995).
Spurnỳ, P., Borovička, J., Mucke, H. & Svoreň, J. Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies. Astron. Astrophys. 605, A68 (2017).
Ceplecha, Z. Luminous efficiency based on photographic observations of the Lost City fireball and implications for the influx of interplanetary bodies onto Earth. Astron. Astrophys. 311, 329–332 (1996).
Anghel, S. et al. Energy signature of ton TNT-class impacts: analysis of the 2018 December 22 fireball over Western Pyrenees. Mon. Not. R. Astron. Soc. 508, 5716–5733 (2021).
Nemtchinov, I. et al. Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130, 259–274 (1997).
Gritsevich, M. & Stulov, V. Extra-atmospheric masses of the Canadian network bolides. Sol. Syst. Res. 40, 477–484 (2006).
Gritsevich, M. I. Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Sol. Syst. Res. 41, 509–514 (2007).
Moreno-Ibáñez, M., Gritsevich, M. & Trigo-Rodríguez, J. M. New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015).
Shober, P. M. et al. The main asteroid belt: the primary source of debris on comet-like orbits. Planet. Sci. J. 2, 98 (2021).
Valsecchi, G., Jopek, T. & Froeschlé, C. Meteoroid stream identification: a new approach. I. Theory. Mon. Not. R. Astron. Soc. 304, 743–750 (1999).
Shober, P. M. & Vaubaillon, J. A generalizable method for estimating meteor shower false positives. Astron. Astrophys. 686, A130 (2024).
Tancredi, G. A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234, 66–80 (2014).
Jopek, T. J. Remarks on the meteor orbital similarity D-criterion. Icarus 106, 603–607 (1993).
Pokornỳ, P. & Vokrouhlickỳ, D. Öpik-type collision probability for high-inclination orbits: targets on eccentric orbits. Icarus 226, 682–693 (2013).
Shober, P. Debiased meteor and possible meteorite dropping fireballs observed by EFN, EDMOND, CAMS, GMN, FRIPON, GFO. Zenodo https://doi.org/10.5281/zenodo.14017585 (2025).
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 945298 ParisRegionFP (P.M.S.) and grant no. 101150536 (S.A.). The Global Fireball Observatory and data pipeline is enabled by the support of the Australian Research Council (grant nos. DP230100301 and LE170100106) (P.M.S., H.A.R.D., S.E.D., E.K.S., P.B.). FRIPON was initiated by funding from ANR (grant no. 13-BS05-0009-03), carried by the Paris Observatory, Muséum National d’Histoire Naturelle, Paris-Saclay University and Institut Pythéas (LAM-CEREGE). Vigie-Ciel was part of the 65 Millions d’Observateurs project, carried by the Muséum National d’Histoire Naturelle and funded by the French Investissements d’Avenir programme. FRIPON data are hosted and processed at Institut Pythéas SIP (Service Informatique Pythéas), and a mirror is hosted at LTE (Le Laboratoire Temps Espace/Paris Observatory) (P.M.S., J.V., S.A., F.C., B.Z., P.V.).
Author information
Authors and Affiliations
Contributions
P.M.S. collected the open-access data sources, removed the cometary components, applied the α–β methodology, debiased the FRIPON dataset, estimated the masses for the CAMS/EDMOND datasets and did the statistical significance analysis of the differences between the orbital distributions. S.A. calculated the photometric masses for the FRIPON dataset. P.M.S., H.A.R.D., J.V., S.E.D. and S.A. assisted with the data interpretation. E.K.S., H.A.R.D. and P.B. facilitated the management, collection and reduction of the GFO dataset. P.M.S., S.A., F.C., J.V., B.Z. and P.V. facilitated the management, collection and reduction of the FRIPON observations. P.M.S., H.A.R.D., J.V., S.E.D., S.A. and P.V. assisted with the paper revisions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Ashley King and Josep Trigo-Rodriguez for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10 and discussion sections 1–5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shober, P.M., Devillepoix, H.A.R., Vaubaillon, J. et al. Perihelion history and atmospheric survival as primary drivers of the Earth’s meteorite record. Nat Astron 9, 799–812 (2025). https://doi.org/10.1038/s41550-025-02526-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02526-6


