Abstract
The ionized interstellar medium contains astronomical-unit-scale (and below) structures that scatter radio waves from pulsars, resulting in scintillation. Power spectral analysis of scintillation often shows parabolic arcs, with curvatures that encode the locations and kinematics of the pulsar, Earth and interstellar plasma. Here we report the discovery of 25 distinct plasma structures in the direction of the brilliant millisecond pulsar, PSR J0437−4715, in observations obtained with the MeerKAT radio telescope. Four arcs reveal structures within 5,000 au of the pulsar, from a series of shocks induced as the pulsar and its wind interact with the ambient interstellar medium. The measured radial distance and velocity of the main shock allow us to solve the shock geometry and space velocity of the pulsar in three dimensions, whereas the velocity of another structure unexpectedly indicates a back flow from the direction of the shock or pulsar-wind tail. The remaining 21 arcs represent a surprising abundance of structures sustained by turbulence within the Local Bubble, which is a region of the interstellar medium thought to be depleted of gas by a series of supernova explosions about 14 Myr ago. The Local Bubble is cool enough in areas for subastronomical-unit density fluctuations to arise from turbulence.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The dynamic spectra from our observations are available via figshare at https://doi.org/10.6084/m9.figshare.27311715 (ref. 65). Any further data may be provided upon reasonable request to the corresponding author.
Code availability
Code for processing the dynamic spectra and the interactive tools for arc identification and curvature fitting are available at http://github.com/danielreardon/J0437-Scintillation-arcs, including the parameters used to model screens for this work.
References
Armstrong, J. W., Rickett, B. J. & Spangler, S. R. Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209 (1995).
Goldreich, P. & Sridhar, S. Toward a theory of interstellar turbulence. II. Strong Alfvenic turbulence. Astrophys. J. 438, 763 (1995).
Rickett, B. J. Frequency structure of pulsar intensity variations. Nature 221, 158–159 (1969).
Cordes, J. M., Pidwerbetsky, A. & Lovelace, R. V. E. Refractive and diffractive scattering in the interstellar medium. Astrophys. J. 310, 737 (1986).
Rickett, B. J. Radio propagation through the turbulent interstellar plasma. Annu. Rev. Astron. Astrophys. 28, 561–605 (1990).
Bailes, M. et al. The MeerKAT telescope as a pulsar facility: system verification and early science results from MeerTime. Publ. Astron. Soc. Aust. 37, e028 (2020).
Stinebring, D. R. et al. Faint scattering around pulsars: probing the interstellar medium on Solar System size scales. Astrophys. J. Lett. 549, L97–L100 (2001).
Walker, M. A., Melrose, D. B., Stinebring, D. R. & Zhang, C. M. Interpretation of parabolic arcs in pulsar secondary spectra. Mon. Not. R. Astron. Soc. 354, 43–54 (2004).
Cordes, J. M., Rickett, B. J., Stinebring, D. R. & Coles, W. A. Theory of parabolic arcs in interstellar scintillation spectra. Astrophys. J. 637, 346–365 (2006).
Yao, J. et al. Evidence for three-dimensional spin-velocity alignment in a pulsar. Nat. Astron. 5, 788–795 (2021).
Serafin Nadeau, T. et al. A cacophony of echoes from daily monitoring of the Crab Pulsar at Jodrell Bank. Astrophys. J. 962, 57 (2024).
Lin, F. X. et al. Plasma lensing near the eclipses of the Black Widow pulsar B1957+20. Mon. Not. R. Astron. Soc. 519, 121–135 (2023).
Bell, J. F., Bailes, M. & Bessell, M. S. Optical detection of the companion of the millisecond pulsar J0437−4715. Nature 364, 603–605 (1993).
Reardon, D. J. et al. Precision orbital dynamics from interstellar scintillation arcs for PSR J0437−4715. Astrophys. J. 904, 104 (2020).
Johnston, S. et al. Discovery of a very bright, nearby binary millisecond pulsar. Nature 361, 613–615 (1993).
van Straten, W. et al. A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. Nature 412, 158–160 (2001).
Reardon, D. J. et al. The neutron star mass, distance, and inclination from precision timing of the brilliant millisecond pulsar J0437−4715. Astrophys. J. Lett. 971, L18 (2024).
Brownsberger, S. & Romani, R. W. A survey for Hα pulsar bow shocks. Astrophys. J. 784, 154 (2014).
Rangelov, B. et al. First detection of a pulsar bow shock nebula in far-UV: PSR J0437−4715. Astrophys. J. 831, 129 (2016).
Wilkin, F. P. Exact analytic solutions for stellar wind bow shocks. Astrophys. J. Lett. 459, L31 (1996).
Bucciantini, N. Pulsar bow-shock nebulae. II. Hydrodynamical simulation. Astron. Astrophys. 387, 1066–1073 (2002).
Vigelius, M., Melatos, A., Chatterjee, S., Gaensler, B. M. & Ghavamian, P. Three-dimensional hydrodynamic simulations of asymmetric pulsar wind bow shocks. Mon. Not. R. Astron. Soc. 374, 793–808 (2007).
Romani, R. W. et al. The bow shock and kinematics of PSR J1959+2048. Astrophys. J. 930, 101 (2022).
Ocker, S. K. et al. Pulsar scintillation through thick and thin: bow shocks, bubbles, and the broader interstellar medium. Mon. Not. R. Astron. Soc. 527, 7568–7587 (2024).
Wilkin, F. P. Modeling nonaxisymmetric bow shocks: solution method and exact analytic solutions. Astrophys. J. 532, 400–414 (2000).
Shklovskii, I. S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 13, 562 (1970).
van Straten, W. High-precision Timing and Polarimetry of PSR J0437−4715. Ph.D. thesis, Swinburne Univ. of Technology, Australia (2003).
Liu, X. J., Bassa, C. G. & Stappers, B. W. High-precision pulsar timing and spin frequency second derivatives. Mon. Not. R. Astron. Soc. 478, 2359–2367 (2018).
Agazie, G. et al. The NANOGrav 15 yr data set: evidence for a gravitational-wave background. Astrophys. J. Lett. 951, L8 (2023).
Reardon, D. J. et al. Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 951, L6 (2023).
EPTA Collaboration and InPTA collaboration et al. The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals. Astron. Astrophys. 678, A50 (2023).
Xu, H. et al. Searching for the nano-Hertz stochastic gravitational wave background with the Chinese pulsar timing array data release I. Res. Astron. Astrophys. 23, 075024 (2023).
Pen, U.-L. & Levin, Y. Pulsar scintillations from corrugated reconnection sheets in the interstellar medium. Mon. Not. R. Astron. Soc. 442, 3338–3346 (2014).
Deller, A. T., Verbiest, J. P. W., Tingay, S. J. & Bailes, M. Extremely high precision VLBI astrometry of PSR J0437−4715 and implications for theories of gravity. Astrophys. J. Lett. 685, L67 (2008).
Yeh, K. C. & Liu, C. H. Radio wave scintillations in the ionosphere. Proc. IEEE 70, 324–360 (1982).
McKee, J. W., Zhu, H., Stinebring, D. R. & Cordes, J. M. Probing the local interstellar medium with scintillometry of the bright pulsar B1133+16. Astrophys. J. 927, 99 (2022).
Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling the magnetized Local Bubble from dust data. Astron. Astrophys. 636, A17 (2020).
Zucker, C. et al. Star formation near the Sun is driven by expansion of the Local Bubble. Nature 601, 334–337 (2022).
Lallement, R. et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astron. Astrophys. 625, A135 (2019).
Spangler, S. R. Plasma turbulence in the Local Bubble. Space Sci. Rev. 143, 277–290 (2009).
Linsky, J. L. & Redfield, S. Could the Local Cavity be an irregularly shaped Strömgren sphere? Astrophys. J. 920, 75 (2021).
Kim, C.-G., Ostriker, E. C. & Raileanu, R. Superbubbles in the multiphase ISM and the loading of Galactic winds. Astrophys. J. 834, 25 (2017).
Welsh, B. Y., Lallement, R., Vergely, J. L. & Raimond, S. New 3D gas density maps of NaI and CaII interstellar absorption within 300 pc. Astron. Astrophys. 510, A54 (2010).
van Straten, W., Demorest, P. & Oslowski, S. Pulsar data analysis with PSRCHIVE. Astron. Res. Technol. 9, 237–256 (2012).
Lazarus, P. et al. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend. Mon. Not. R. Astron. Soc. 458, 868–880 (2016).
Reardon, D. J. Scintools: pulsar scintillation data tools. Astrophysics Source Code Library ascl:2011.019 (2020).
Damelin, S. B. & Hoang, N. S. On surface completion and image inpainting by biharmonic functions: numerical aspects. Preprint at https://arxiv.org/abs/1707.06567 (2017).
Lin, F. X., Main, R. A., Verbiest, J. P. W., Kramer, M. & Shaifullah, G. Discovery and modelling of broad-scale plasma lensing in black-widow pulsar J2051 - 0827. Mon. Not. R. Astron. Soc. 506, 2824–2835 (2021).
Sprenger, T., Wucknitz, O., Main, R., Baker, D. & Brisken, W. The θ–θ diagram: transforming pulsar scintillation spectra to coordinates on highly anisotropic interstellar scattering screens. Mon. Not. R. Astron. Soc. 500, 1114–1124 (2021).
Stinebring, D. R. et al. A scintillation arc survey of 22 pulsars with low to moderate dispersion measures. Astrophys. J. 941, 34 (2022).
Main, R. A. et al. The Thousand Pulsar Array programme on MeerKAT - X. Scintillation arcs of 107 pulsars. Mon. Not. R. Astron. Soc. 518, 1086–1097 (2023).
Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).
Reardon, D. J. et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Mon. Not. R. Astron. Soc. 455, 1751–1769 (2016).
Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019).
Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Walker, K., Reardon, D. J., Thrane, E. & Smith, R. Orbital dynamics and extreme scattering event properties from long-term scintillation observations of PSR J1603−7202. Astrophys. J. 933, 16 (2022).
Askew, J., Reardon, D. J. & Shannon, R. M. Analysis of the ionized interstellar medium and orbital dynamics of PSR J1909−3744 using scintillation arcs. Mon. Not. R. Astron. Soc. 519, 5086–5098 (2023).
Kopeikin, S. M. On possible implications of orbital parallaxes of wide orbit binary pulsars and their measurability. Astrophys. J. Lett. 439, L5 (1995).
The Bow Shock of the Nearest Millisecond Pulsar. STScI https://www.stsci.edu/~fruchter/nebula/ (1995).
O’Rourke, J. Computational Geometry in C 2nd edn (Cambridge Univ. Press, 1998).
Lee, L. C. & Jokipii, J. R. Strong scintillations in astrophysics. II. A theory temporal broadening pulses Astrophys. J. 201, 532–543 (1975).
Reardon, D. J. & Coles, W. A. Determining electron column density fluctuations in a dominant scattering region using pulsar scintillation. Mon. Not. R. Astron. Soc. 521, 6392–6400 (2023).
Reardon, D. J. et al. Dynamic spectra from observations described in "Bow Shock and Local Bubble Plasma Unveiled by the Scintillating Millisecond Pulsar J0437-4715". figshare https://doi.org/10.6084/m9.figshare.27311715 (2025).
Acknowledgements
The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. Part of this work was undertaken as part of the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (project nos CE170100004 and CE230100016). R.M.S. acknowledges support through Australian Research Council Future Fellowship FT190100155. A.P. acknowledges financial support from the European Research Council (ERC) starting grant ‘GIGA’ (grant agreement no. 101116134) and through the NWO-I Veni fellowship.
Author information
Authors and Affiliations
Contributions
D.J.R. devised the project, led the data analysis and drafted the manuscript. R.M. contributed to the analysis of the scintillation arcs and bow shock and assisted with manuscript preparation. S.K.O. contributed to the interpretation of the scintillation arcs and assisted with manuscript preparation. R.M.S. and M.B. were involved in observation planning and provided input on the manuscript. D.J.R., R.M.S., M.B., F.C., M.G., A.J., M.K., A.P., R.S., W.v.S. and V.V.K. contributed to the foundational work of the MeerTime project, which facilitated the collection of this dataset under the MeerKAT Pulsar Timing Array (MPTA) programme. All authors reviewed and provided feedback on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Marten van Kerkwijk and Daniel Stinebring for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Probability density contours for the pulsar distance, Dpsr and longitude of ascending node, Ω, derived from a high signal-to-noise scintillation arc.
Blue contours show the 68%, 95%, and 99.7% credible intervals for the posterior distribution inferred from the arc (‘ID 2’ in Table 1). The orange shaded regions show the precise 1σ (68%) confident intervals from pulsar timing (Reardon et al. 2024). The central 68% credible intervals inferred from the scintillation arc are \(\Omega =20{4}_{-13}^{+10}\) (degrees, East of North) and \({D}_{{\rm{psr}}}=15{8}_{-6}^{+3}\) pc.
Extended Data Fig. 2 Strength of scattering for each screen.
The maximum observed scattering angle (\({\alpha }_{\max }\)) is shown in blue for each screen with fractional screen distance (s). The solid and dashed horizontal lines show the mean and standard deviation of the \({\alpha }_{\max }\) values from screens attributed to interstellar plasma, \({\alpha }_{\max ,{\rm{ISM}}}=4.8\pm 0.8\) mas. The four bow shock scintillation arcs originate from notably larger scattering angles.
Extended Data Fig. 3 Location of the measured scattering screens along the line of sight to PSR J0437 − 4715, projected onto the Galactic plane.
The colour scale shows the Lallement et al. (2019) map of logarithmic differential extinction due to dust, \({\log }_{10}({A}_{v})\), where Av is in units of magnitude per parsec (M pc−1). The darker regions are used to define the latest (three-dimensional) Local Bubble model (Pelgrims et al. 2020).
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2.
Supplementary Video 1
Animated version of Fig. 2 in the main text, showing the scintillation arc curvatures changing with the orbital phase of the pulsar. Each frame of the animation shows the secondary spectrum from a ~12-h observation on an individual day, for six consecutive days of the observing campaign.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Reardon, D.J., Main, R., Ocker, S.K. et al. Bow shock and Local Bubble plasma unveiled by the scintillating millisecond pulsar J0437−4715. Nat Astron 9, 1053–1063 (2025). https://doi.org/10.1038/s41550-025-02534-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02534-6


