Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The spectrum of magnetized turbulence in the interstellar medium

Abstract

The interstellar medium (ISM) of our Galaxy is magnetized, compressible and turbulent, influencing many key ISM properties, such as star formation, cosmic-ray transport, and metal and phase mixing. Yet, basic statistics describing compressible, magnetized turbulence remain uncertain. Utilizing grid resolutions up to 10,0803 cells, we simulated highly compressible, magnetized ISM-style turbulence with a magnetic field maintained by a small-scale dynamo. We measured two coexisting kinetic energy cascades, \({{\mathcal{E}}}_{{\rm{kin}}}(k)\propto {k}^{-n}\), in the turbulence, separating the plasma into scales that are non-locally interacting, supersonic and weakly magnetized (n = 2.01 ± 0.03 ≈ 2) and locally interacting, subsonic and highly magnetized (n = 1.465 ± 0.002 ≈ 3/2), where k is the wavenumber. We show that the 3/2 spectrum can be explained with scale-dependent kinetic energy fluxes and velocity–magnetic field alignment. On the highly magnetized modes, the magnetic energy spectrum forms a local cascade (n = 1.798 ± 0.001 ≈ 9/5), deviating from any known ab initio theory. With a new generation of radio telescopes coming online, these results provide a means to directly test if the ISM in our Galaxy is maintained by the compressible turbulent motions from within it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The current density, magnetic field and mass density structure in what is presently the world’s largest supersonic MHD turbulence simulation.
Fig. 2: The energy spectra, fundamental turbulence scales and shell-to-shell energy flux transfer functions.
Fig. 3: The scale-dependent alignment of the velocity and magnetic field and energy flux.

Similar content being viewed by others

Data availability

All raw data for temporally averaged energy spectra, probability distribution functions and structure functions presented in the study are available via GitHub at https://github.com/AstroJames/10k_supersonicMHD. The raw simulation data (for example, three-dimensional fields, which are many hundreds of TBs in total) and the data shown in Supplementary Figs. 1–4 are available from the corresponding author upon reasonable request.

Code availability

Access to the basic simulation code (FLASH) used in this manuscript can be obtained via reasonable request at https://flash.rochester.edu/site/flashcode.

References

  1. Krumholz, M. R. et al. Cosmic ray transport in starburst galaxies. Mon. Not. R. Astron. Soc. 493, 2817–2833 (2020).

    Article  ADS  Google Scholar 

  2. Xu, S. & Lazarian, A. Cosmic ray streaming in the turbulent interstellar medium. Astrophys. J. 927, 94 (2022).

    Article  ADS  Google Scholar 

  3. Beattie, J. R., Krumholz, M. R., Federrath, C., Sampson, M. L. & Crocker, R. M. Ion alfvén velocity fluctuations and implications for the diffusion of streaming cosmic rays. Front. Astron. Space Sci. 9, 900900 (2022).

    Article  Google Scholar 

  4. Sampson, M. L. et al. Turbulent diffusion of streaming cosmic rays in compressible, partially ionized plasma. Mon. Not. R. Astron. Soc. 519, 1503–1525 (2023).

    Article  ADS  Google Scholar 

  5. Ruszkowski, M. & Pfrommer, C. Cosmic ray feedback in galaxies and galaxy clusters. Astron. Astrophys. Rev. 31, 4 (2023).

    Article  ADS  Google Scholar 

  6. Federrath, C. On the universality of interstellar filaments: theory meets simulations and observations. Mon. Not. R. Astron. Soc. 457, 375–388 (2016).

    Article  ADS  Google Scholar 

  7. Hacar, A. et al. in Protostars and Planets VII. Astronomical Society of the Pacific Conference Series Vol. 534 (eds Inutsuka, S. et al.) 153–192 (Astronomical Society of the Pacific, 2023).

  8. Mac Low, M. M. & Klessen, R. S. Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004).

    Article  ADS  Google Scholar 

  9. McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007).

    Article  ADS  Google Scholar 

  10. Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).

    Article  ADS  Google Scholar 

  11. Federrath, C. & Klessen, R. S. The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012).

  12. Burkhart, B. The star formation rate in the gravoturbulent interstellar medium. Astrophys. J. 863, 118 (2018).

    Article  ADS  Google Scholar 

  13. Nam, D. G., Federrath, C. & Krumholz, M. R. Testing the turbulent origin of the stellar initial mass function. Mon. Not. R. Astron. Soc. 503, 1138–1148 (2021).

    Article  ADS  Google Scholar 

  14. Beattie, J. R., Federrath, C., Klessen, R. S. & Schneider, N. The relation between the turbulent Mach number and observed fractal dimensions of turbulent clouds. Mon. Not. R. Astron. Soc. 488, 2493–2502 (2019).

    Article  ADS  Google Scholar 

  15. Krumholz, M. R. Notes on star formation. Preprint at https://arxiv.org/abs/1511.03457 (2015).

  16. Federrath, C. et al. The link between turbulence, magnetic fields, filaments, and star formation in the Central Molecular Zone cloud G0.253+0.016. Astrophys. J. 832, 143 (2016).

    Article  ADS  Google Scholar 

  17. Ferrière, K. Plasma turbulence in the interstellar medium. Plasma Phys. Control. Fusion 62, 014014 (2020).

    Article  ADS  Google Scholar 

  18. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk Sssr 30, 301–305 (1941).

    ADS  MathSciNet  Google Scholar 

  19. Ferrand, R., Galtier, S., Sahraoui, F. & Federrath, C. Compressible turbulence in the interstellar medium: new insights from a high-resolution supersonic turbulence simulation. Astrophys. J. 904, 160 (2020).

    Article  ADS  Google Scholar 

  20. Federrath, C., Klessen, R. S., Iapichino, L. & Beattie, J. R. The sonic scale of interstellar turbulence. Nat. Astron. 5, 365–371 (2021).

    Article  ADS  Google Scholar 

  21. Burgers, J. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948).

    Article  MathSciNet  Google Scholar 

  22. She, Z.-S. & Leveque, E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994).

    Article  ADS  Google Scholar 

  23. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ULIRGs. Astrophys. J. 630, 250–268 (2005).

    Article  ADS  Google Scholar 

  24. Hu, Y. et al. Magnetic field morphology in interstellar clouds with the velocity gradient technique. Nat. Astron. 3, 776–782 (2019).

    Article  ADS  Google Scholar 

  25. Skalidis, R. et al. HI–H2 transition: exploring the role of the magnetic field. A case study toward the Ursa Major cirrus. Astron. Astrophys. 665, A77 (2022).

    Article  Google Scholar 

  26. Gaensler, B. M. et al. Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients. Nature 478, 214–217 (2011).

    Article  ADS  Google Scholar 

  27. Soler, J. D. et al. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex. Astron. Astrophys. 603, A64 (2017).

    Article  Google Scholar 

  28. Clark, S. E. & Hensley, B. S. Mapping the magnetic interstellar medium in three dimensions over the full sky with neutral hydrogen. Astrophys. J. 887, 136 (2019).

    Article  ADS  Google Scholar 

  29. Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004).

    Article  ADS  Google Scholar 

  30. Rincon, F. Dynamo theories. J. Plasma Phys. 85, 205850401 (2019).

    Article  Google Scholar 

  31. Goldreich, P. & Sridhar, S. Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995).

    Article  ADS  Google Scholar 

  32. Boldyrev, S. Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96, 115002 (2006).

    Article  ADS  Google Scholar 

  33. Mason, J., Cattaneo, F. & Boldyrev, S. Dynamic alignment in driven magnetohydrodynamic turbulence. Phys. Rev. Lett. 97, 255002 (2006).

    Article  ADS  Google Scholar 

  34. Banerjee, S., Halder, A. & Pan, N. Universal turbulent relaxation of fluids and plasmas by the principle of vanishing nonlinear transfers. Phys. Rev. E 107, L043201 (2023).

    Article  ADS  Google Scholar 

  35. Dong, C. et al. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. Sci. Adv. 8, eabn7627 (2022).

    Article  Google Scholar 

  36. Galishnikova, A. K., Kunz, M. W. & Schekochihin, A. A. Tearing instability and current-sheet disruption in the turbulent dynamo. Phys. Rev. X 12, 041027 (2022).

    Google Scholar 

  37. Fielding, D. B., Ripperda, B. & Philippov, A. A. Plasmoid instability in the multiphase interstellar medium. Astrophys. J. Lett. 949, L5 (2023).

    Article  ADS  Google Scholar 

  38. Mallet, A., Schekochihin, A. A. & Chandran, B. D. G. Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection. Mon. Not. R. Astron. Soc. 468, 4862–4871 (2017).

    Article  ADS  Google Scholar 

  39. Comisso, L., Huang, Y. M., Lingam, M., Hirvijoki, E. & Bhattacharjee, A. Magnetohydrodynamic turbulence in the plasmoid-mediated regime. Astrophys. J. 854, 103 (2018).

    Article  ADS  Google Scholar 

  40. Boldyrev, S. & Loureiro, N. F. Tearing instability in Alfvén and kinetic-Alfvén turbulence. J. Geophys. Res. Space Phys. 125, e2020JA028185 (2020).

    Article  ADS  Google Scholar 

  41. Ntormousi, E., Vlahos, L., Konstantinou, A. & Isliker, H. Strong turbulence and magnetic coherent structures in the interstellar medium. Astron. Astrophys. 691, A149 (2024).

    Article  Google Scholar 

  42. Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009).

    Article  ADS  Google Scholar 

  43. Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. A. Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002 (2010).

    Article  ADS  Google Scholar 

  44. Loureiro, N. F. & Boldyrev, S. Role of magnetic reconnection in magnetohydrodynamic turbulence. Phys. Rev. Lett. 118, 245101 (2017).

    Article  ADS  Google Scholar 

  45. Iroshnikov, P. S. Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964).

    ADS  MathSciNet  Google Scholar 

  46. Kraichnan, R. H. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965).

    Article  ADS  Google Scholar 

  47. Beresnyak, A. Spectra of strong magnetohydrodynamic turbulence from high-resolution simulations. Astrophys. J. Lett. 784, L20 (2014).

    Article  ADS  Google Scholar 

  48. Whitworth, D. J. et al. On the relation between magnetic field strength and gas density in the interstellar medium: a multiscale analysis. Preprint at https://arxiv.org/abs/2407.18293 (2024).

  49. Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of dynamical range – scale-dependent energy dynamics in MHD turbulence. Astrophys. J. Lett. 942, L34 (2023).

    Article  ADS  Google Scholar 

  50. Grete, P., O’Shea, B. W., Beckwith, K., Schmidt, W. & Christlieb, A. Energy transfer in compressible magnetohydrodynamic turbulence. Phys. Plasmas 24, 092311 (2017).

    Article  ADS  Google Scholar 

  51. Galtier, S. & Banerjee, S. Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107, 134501 (2011).

    Article  ADS  Google Scholar 

  52. Beattie, J. R., Noer Kolborg, A., Ramirez-Ruiz, E. & Federrath, C. So long Kolmogorov: the forward and backward turbulence cascades in a supernovae-driven, multiphase interstellar medium. Preprint at https://arxiv.org/abs/2501.09855 (2025).

  53. Lithwick, Y. & Goldreich, P. Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001).

    Article  ADS  Google Scholar 

  54. Boldyrev, S. & Perez, J. C. Spectrum of weak magnetohydrodynamic turbulence. Phys. Rev. Lett. 103, 225001 (2009).

    Article  ADS  Google Scholar 

  55. Colman, T. et al. The signature of large-scale turbulence driving on the structure of the interstellar medium. Mon. Not. R. Astron. Soc. 514, 3670–3684 (2022).

    Article  ADS  Google Scholar 

  56. Raymond, J. C. et al. Turbulence and energetic particles in radiative shock waves in the Cygnus Loop. I. Shock properties. Astrophys. J. 894, 108 (2020).

    Article  ADS  Google Scholar 

  57. Hosking, D. N., Schekochihin, A. A. & Balbus, S. A. Elasticity of tangled magnetic fields. J. Plasma Phys. 86, 905860511 (2020).

    Article  Google Scholar 

  58. Galtier, S. Fast magneto-acoustic wave turbulence and the Iroshnikov–Kraichnan spectrum. J. Plasma Phys. 89, 905890205 (2023).

    Article  Google Scholar 

  59. Arzoumanian, D. et al. Characterizing interstellar filaments with Herschel in IC5146. Astron. Astrophys. 529, L6 (2011).

    Article  ADS  Google Scholar 

  60. André, P. J., Palmeirim, P. & Arzoumanian, D. The typical width of Herschel filaments. Astron. Astrophys. 667, L1 (2022).

    Article  ADS  Google Scholar 

  61. Padoan, P. & Nordlund, Å The star formation rate of supersonic magnetohydrodynamic turbulence. Astrophys. J. 730, 40 (2011).

    Article  ADS  Google Scholar 

  62. Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of tension: kinetic energy spectra in MHD turbulence. Astrophys. J. 909, 148 (2021).

    Article  ADS  Google Scholar 

  63. Seta, A., Federrath, C., Livingston, J. D. & McClure-Griffiths, N. M. Rotation measure structure functions with higher-order stencils as a probe of small-scale magnetic fluctuations and its application to the Small and Large Magellanic Clouds. Mon. Not. R. Astron. Soc. 518, 919–944 (2023).

    Article  ADS  Google Scholar 

  64. Anderson, C. S. et al. Early science from POSSUM: shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax Cluster. Publ. Astron. Soc. Aust. 38, e020 (2021).

    Article  ADS  Google Scholar 

  65. Vanderwoude, S. et al. Prototype Faraday rotation measure catalogs from the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM) pilot observations. Astron. J. 167, 226 (2024).

    Article  ADS  Google Scholar 

  66. Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  ADS  Google Scholar 

  67. Dubey, A. et al. in Numerical Modeling of Space Plasma Flows. Astronomical Society of the Pacific Conference Series Vol. 385 (eds Pogorelov, N. V. et al.) 145–150 (Astronomical Society of the Pacific, 2008).

  68. Bouchut, F., Klingenberg, C. & Waagan, K. A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer. Math. 115, 647–679 (2010).

    Article  MathSciNet  Google Scholar 

  69. Waagan, K., Federrath, C. & Klingenberg, C. A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230, 3331–3351 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  70. Eswaran, V. & Pope, S. B. An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988).

    Article  ADS  Google Scholar 

  71. Schmidt, W., Federrath, C., Hupp, M., Kern, S. & Niemeyer, J. C. Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas. Astron. Astrophys. 494, 127–145 (2009).

    Article  ADS  Google Scholar 

  72. Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M. M. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81 (2010).

    Article  ADS  Google Scholar 

  73. Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M. M. TG: Turbulence Generator. Astrophysics Source Code Library ascl: 2204.001 (2022).

  74. Federrath, C., Klessen, R. S. & Schmidt, W. The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688, L79 (2008).

    Article  ADS  Google Scholar 

  75. Beattie, J. R., Federrath, C., Kriel, N., Mocz, P. & Seta, A. Growth or decay—I: universality of the turbulent dynamo saturation. Mon. Not. R. Astron. Soc. 524, 3201–3214 (2023).

    Article  ADS  Google Scholar 

  76. Seta, A. & Federrath, C. Seed magnetic fields in turbulent small-scale dynamos. Mon. Not. R. Astron. Soc. 499, 2076–2086 (2020).

    Article  ADS  Google Scholar 

  77. Federrath, C. Magnetic field amplification in turbulent astrophysical plasmas. J. Plasma Phys. 82, 535820601 (2016).

    Article  Google Scholar 

  78. Price, D. J. & Federrath, C. A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. Mon. Not. R. Astron. Soc. 406, 1659–1674 (2010).

    ADS  Google Scholar 

  79. Beattie, J. R., Mocz, P., Federrath, C. & Klessen, R. S. The density distribution and physical origins of intermittency in supersonic, highly magnetized turbulence with diverse modes of driving. Mon. Not. R. Astron. Soc. 517, 5003–5031 (2022).

    Article  ADS  Google Scholar 

  80. Kriel, N., Beattie, J. R., Seta, A. & Federrath, C. Fundamental scales in the kinematic phase of the turbulent dynamo. Mon. Not. R. Astron. Soc. 513, 2457–2470 (2022).

    Article  ADS  Google Scholar 

  81. Shivakumar, L. M. & Federrath, C. Numerical viscosity and resistivity in MHD turbulence simulations. Mon. Not. R. Astron. Soc. 537, 2961–2986 (2025).

    Article  Google Scholar 

  82. Cielo, S., Iapichino, L., Baruffa, F., Bugli, M. & Federrath, C. Honing and proofing astrophysical codes on the road to Exascale. Experiences from code modernization on many-core systems. Preprint at https://arxiv.org/abs/2002.08161 (2020).

  83. Federrath, C. et al. Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. Phys. Rev. Lett. 107, 114504 (2011).

    Article  ADS  Google Scholar 

  84. Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007).

    Article  ADS  Google Scholar 

  85. Federrath, C. On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436, 1245–1257 (2013).

    Article  ADS  Google Scholar 

  86. Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of state: the role of thermodynamics in magnetohydrodynamic turbulence. Astrophys. J. 889, 19 (2020).

    Article  ADS  Google Scholar 

  87. Bhattacharjee, A., Ng, C. S. & Spangler, S. R. Weakly compressible magnetohydrodynamic turbulence in the solar wind and the interstellar medium. Astrophys. J. 494, 409–418 (1998).

    Article  ADS  Google Scholar 

  88. Beattie, J. R. et al. Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field. Mon. Not. R. Astron. Soc. 515, 5267–5284 (2022).

    Article  ADS  Google Scholar 

  89. Perez, J. C. & Boldyrev, S. On weak and strong magnetohydrodynamic turbulence. Astrophys. J. Lett. 672, L61 (2008).

    Article  ADS  Google Scholar 

  90. Meyrand, R., Galtier, S. & Kiyani, K. H. Direct evidence of the transition from weak to strong magnetohydrodynamic turbulence. Phys. Rev. Lett. 116, 105002 (2016).

    Article  ADS  Google Scholar 

  91. Robertson, B. & Goldreich, P. Dense regions in supersonic isothermal turbulence. Astrophys. J. 854, 88 (2018).

    Article  ADS  Google Scholar 

  92. Mocz, P. & Burkhart, B. Star formation from dense shocked regions in supersonic isothermal magnetoturbulence. Mon. Not. R. Astron. Soc. 480, 3916–3927 (2018).

    Article  ADS  Google Scholar 

  93. Planck Collaboration et al. Planck intermediate results. XXXIV. The magnetic field structure in the Rosette Nebula. Astron. Astrophys. 586, A137 (2016).

    Article  Google Scholar 

  94. Kempski, P. et al. A unified model of cosmic ray propagation and radio extreme scattering events from intermittent interstellar structures. Preprint at https://arxiv.org/abs/2412.03649 (2024).

  95. Hopkins, P. F. A model for (non-lognormal) density distributions in isothermal turbulence. Mon. Not. R. Astron. Soc. 430, 1880–1891 (2013).

    Article  ADS  Google Scholar 

  96. Mocz, P. & Burkhart, B. A Markov model for non-lognormal density distributions in compressive isothermal turbulence. Astrophys. J. Lett. 884, L35 (2019).

    Article  ADS  Google Scholar 

  97. Loureiro, N. F. & Uzdensky, D. A. Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys. Control. Fusion 58, 014021 (2015).

    Article  ADS  Google Scholar 

  98. Dong, C., Wang, L., Huang, Y.-M., Comisso, L. & Bhattacharjee, A. Role of the plasmoid instability in magnetohydrodynamic turbulence. Phys. Rev. Lett. 121, 165101 (2018).

    Article  ADS  Google Scholar 

  99. Kempski, P. & Quataert, E. Reconciling cosmic ray transport theory with phenomenological models motivated by Milky-Way data. Mon. Not. R. Astron. Soc. 514, 657–674 (2022).

    Article  ADS  Google Scholar 

  100. Kempski, P. et al. Cosmic ray transport in large-amplitude turbulence with small-scale field reversals. Mon. Not. R. Astron. Soc. 525, 4985–4998 (2023).

    Article  ADS  Google Scholar 

  101. Butsky, I. S. et al. Galactic cosmic-ray scattering due to intermittent structures. Mon. Not. R. Astron. Soc. 528, 4245–4254 (2024).

    Article  ADS  Google Scholar 

  102. Mininni, P., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  103. Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  104. Schekochihin, A. A. MHD turbulence: a biased review. J. Plasma Phys. 88, 155880501 (2022).

    Article  Google Scholar 

  105. Chernoglazov, A., Ripperda, B. & Philippov, A. Dynamic alignment and plasmoid formation in relativistic magnetohydrodynamic turbulence. Astrophys. J. Lett. 923, L13 (2021).

    Article  ADS  Google Scholar 

  106. Perez, J. C. & Boldyrev, S. Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 025003 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the useful discussions with D. Fielding, A. Chernoglazov and A. Beresnyak on the local anisotropy and alignment structure functions, and the more general discussions about this work with R. Bandyopadhyay, P. K.-S. Kempski, E. Quataert, A. Philippov, P. Mocz, B. Ripperda and C. Thompson. Funding: J.R.B. acknowledges financial support from the Australian National University (ANU), via the Deakin PhD and Dean’s Higher Degree Research (theoretical physics) Scholarships and the Australian Government via the Australian Government Research Training Program Fee-Offset Scholarship and the Australian Capital Territory Government-funded Fulbright scholarship. J.R.B., C.F., R.S.K. and S.C. also acknowledge high-performance computing resources provided by the Leibniz Rechenzentrum and the Gauss Centre for Supercomputing (GCS) grants pr32lo, pr73fi and GCS large-scale project 10391. C.F. acknowledges funding by the Australian Research Council (Discovery Projects grants DP230102280 and DP250101526) and the Australia–Germany Joint Research Cooperation Scheme (UA-DAAD). C.F. also acknowledges high-performance computing resources provided by the Australian National Computational Infrastructure (grant ek9) and the Pawsey Supercomputing Centre (project pawsey0810) in the framework of the National Computational Merit Allocation Scheme and the ANU Merit Allocation Scheme. R.S.K. acknowledges support from the European Research Council (ERC) via the ERC Synergy Grant ‘ECOGAL’ (project ID 855130), from the German Excellence Strategy via the Heidelberg Cluster of Excellence (EXC 2181 - 390900948) ‘STRUCTURES’, and from the German Ministry for Economic Affairs and Climate Action in project ‘MAINN’ (funding ID 50OO2206). R.S.K. also expresses thanks for local computing resources provided by the Ministry of Science, Research and the Arts (MWK) of The Länd through bwHPC and the German Science Foundation (DFG) through grant INST 35/1134-1 FUGG and 35/1597-1 FUGG, and also for data storage at SDS@hd funded through grants INST 35/1314-1 FUGG and INST 35/1503-1 FUGG. J.R.B. and A.B. also acknowledge the support from NSF Award 2206756.

Author information

Authors and Affiliations

Authors

Contributions

J.R.B. led the entirety of the project, including the GCS large-scale project 10391, ran the simulations, co-developed the FLASH code and analysis programs used in this study and led the writing and ideas presented in the manuscript. C.F. co-led the GCS large-scale project 10391, is the lead developer of the FLASH code and the analysis pipelines used in the study and contributed to the ideas presented in this study and the drafting of the manuscript. R.S.K. co-led the GCS large-scale project 10391, and contributed to the ideas presented in this study and drafting of the manuscript. S.C. provided technical advice and assistance during the GCS large-scale project proposal and during the runtime of the simulations, provided support visualizing the large datasets and contributed to the ideas presented in this study and the drafting of the manuscript. A.B. contributed to the ideas presented in this study and the drafting of the manuscript.

Corresponding author

Correspondence to James R. Beattie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beattie, J.R., Federrath, C., Klessen, R.S. et al. The spectrum of magnetized turbulence in the interstellar medium. Nat Astron 9, 1195–1205 (2025). https://doi.org/10.1038/s41550-025-02551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02551-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing