Abstract
The interstellar medium (ISM) of our Galaxy is magnetized, compressible and turbulent, influencing many key ISM properties, such as star formation, cosmic-ray transport, and metal and phase mixing. Yet, basic statistics describing compressible, magnetized turbulence remain uncertain. Utilizing grid resolutions up to 10,0803 cells, we simulated highly compressible, magnetized ISM-style turbulence with a magnetic field maintained by a small-scale dynamo. We measured two coexisting kinetic energy cascades, \({{\mathcal{E}}}_{{\rm{kin}}}(k)\propto {k}^{-n}\), in the turbulence, separating the plasma into scales that are non-locally interacting, supersonic and weakly magnetized (n = 2.01 ± 0.03 ≈ 2) and locally interacting, subsonic and highly magnetized (n = 1.465 ± 0.002 ≈ 3/2), where k is the wavenumber. We show that the 3/2 spectrum can be explained with scale-dependent kinetic energy fluxes and velocity–magnetic field alignment. On the highly magnetized modes, the magnetic energy spectrum forms a local cascade (n = 1.798 ± 0.001 ≈ 9/5), deviating from any known ab initio theory. With a new generation of radio telescopes coming online, these results provide a means to directly test if the ISM in our Galaxy is maintained by the compressible turbulent motions from within it.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
All raw data for temporally averaged energy spectra, probability distribution functions and structure functions presented in the study are available via GitHub at https://github.com/AstroJames/10k_supersonicMHD. The raw simulation data (for example, three-dimensional fields, which are many hundreds of TBs in total) and the data shown in Supplementary Figs. 1–4 are available from the corresponding author upon reasonable request.
Code availability
Access to the basic simulation code (FLASH) used in this manuscript can be obtained via reasonable request at https://flash.rochester.edu/site/flashcode.
References
Krumholz, M. R. et al. Cosmic ray transport in starburst galaxies. Mon. Not. R. Astron. Soc. 493, 2817–2833 (2020).
Xu, S. & Lazarian, A. Cosmic ray streaming in the turbulent interstellar medium. Astrophys. J. 927, 94 (2022).
Beattie, J. R., Krumholz, M. R., Federrath, C., Sampson, M. L. & Crocker, R. M. Ion alfvén velocity fluctuations and implications for the diffusion of streaming cosmic rays. Front. Astron. Space Sci. 9, 900900 (2022).
Sampson, M. L. et al. Turbulent diffusion of streaming cosmic rays in compressible, partially ionized plasma. Mon. Not. R. Astron. Soc. 519, 1503–1525 (2023).
Ruszkowski, M. & Pfrommer, C. Cosmic ray feedback in galaxies and galaxy clusters. Astron. Astrophys. Rev. 31, 4 (2023).
Federrath, C. On the universality of interstellar filaments: theory meets simulations and observations. Mon. Not. R. Astron. Soc. 457, 375–388 (2016).
Hacar, A. et al. in Protostars and Planets VII. Astronomical Society of the Pacific Conference Series Vol. 534 (eds Inutsuka, S. et al.) 153–192 (Astronomical Society of the Pacific, 2023).
Mac Low, M. M. & Klessen, R. S. Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004).
McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007).
Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).
Federrath, C. & Klessen, R. S. The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012).
Burkhart, B. The star formation rate in the gravoturbulent interstellar medium. Astrophys. J. 863, 118 (2018).
Nam, D. G., Federrath, C. & Krumholz, M. R. Testing the turbulent origin of the stellar initial mass function. Mon. Not. R. Astron. Soc. 503, 1138–1148 (2021).
Beattie, J. R., Federrath, C., Klessen, R. S. & Schneider, N. The relation between the turbulent Mach number and observed fractal dimensions of turbulent clouds. Mon. Not. R. Astron. Soc. 488, 2493–2502 (2019).
Krumholz, M. R. Notes on star formation. Preprint at https://arxiv.org/abs/1511.03457 (2015).
Federrath, C. et al. The link between turbulence, magnetic fields, filaments, and star formation in the Central Molecular Zone cloud G0.253+0.016. Astrophys. J. 832, 143 (2016).
Ferrière, K. Plasma turbulence in the interstellar medium. Plasma Phys. Control. Fusion 62, 014014 (2020).
Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk Sssr 30, 301–305 (1941).
Ferrand, R., Galtier, S., Sahraoui, F. & Federrath, C. Compressible turbulence in the interstellar medium: new insights from a high-resolution supersonic turbulence simulation. Astrophys. J. 904, 160 (2020).
Federrath, C., Klessen, R. S., Iapichino, L. & Beattie, J. R. The sonic scale of interstellar turbulence. Nat. Astron. 5, 365–371 (2021).
Burgers, J. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948).
She, Z.-S. & Leveque, E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994).
Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ULIRGs. Astrophys. J. 630, 250–268 (2005).
Hu, Y. et al. Magnetic field morphology in interstellar clouds with the velocity gradient technique. Nat. Astron. 3, 776–782 (2019).
Skalidis, R. et al. HI–H2 transition: exploring the role of the magnetic field. A case study toward the Ursa Major cirrus. Astron. Astrophys. 665, A77 (2022).
Gaensler, B. M. et al. Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients. Nature 478, 214–217 (2011).
Soler, J. D. et al. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex. Astron. Astrophys. 603, A64 (2017).
Clark, S. E. & Hensley, B. S. Mapping the magnetic interstellar medium in three dimensions over the full sky with neutral hydrogen. Astrophys. J. 887, 136 (2019).
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004).
Rincon, F. Dynamo theories. J. Plasma Phys. 85, 205850401 (2019).
Goldreich, P. & Sridhar, S. Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995).
Boldyrev, S. Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96, 115002 (2006).
Mason, J., Cattaneo, F. & Boldyrev, S. Dynamic alignment in driven magnetohydrodynamic turbulence. Phys. Rev. Lett. 97, 255002 (2006).
Banerjee, S., Halder, A. & Pan, N. Universal turbulent relaxation of fluids and plasmas by the principle of vanishing nonlinear transfers. Phys. Rev. E 107, L043201 (2023).
Dong, C. et al. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. Sci. Adv. 8, eabn7627 (2022).
Galishnikova, A. K., Kunz, M. W. & Schekochihin, A. A. Tearing instability and current-sheet disruption in the turbulent dynamo. Phys. Rev. X 12, 041027 (2022).
Fielding, D. B., Ripperda, B. & Philippov, A. A. Plasmoid instability in the multiphase interstellar medium. Astrophys. J. Lett. 949, L5 (2023).
Mallet, A., Schekochihin, A. A. & Chandran, B. D. G. Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection. Mon. Not. R. Astron. Soc. 468, 4862–4871 (2017).
Comisso, L., Huang, Y. M., Lingam, M., Hirvijoki, E. & Bhattacharjee, A. Magnetohydrodynamic turbulence in the plasmoid-mediated regime. Astrophys. J. 854, 103 (2018).
Boldyrev, S. & Loureiro, N. F. Tearing instability in Alfvén and kinetic-Alfvén turbulence. J. Geophys. Res. Space Phys. 125, e2020JA028185 (2020).
Ntormousi, E., Vlahos, L., Konstantinou, A. & Isliker, H. Strong turbulence and magnetic coherent structures in the interstellar medium. Astron. Astrophys. 691, A149 (2024).
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009).
Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. A. Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002 (2010).
Loureiro, N. F. & Boldyrev, S. Role of magnetic reconnection in magnetohydrodynamic turbulence. Phys. Rev. Lett. 118, 245101 (2017).
Iroshnikov, P. S. Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964).
Kraichnan, R. H. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965).
Beresnyak, A. Spectra of strong magnetohydrodynamic turbulence from high-resolution simulations. Astrophys. J. Lett. 784, L20 (2014).
Whitworth, D. J. et al. On the relation between magnetic field strength and gas density in the interstellar medium: a multiscale analysis. Preprint at https://arxiv.org/abs/2407.18293 (2024).
Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of dynamical range – scale-dependent energy dynamics in MHD turbulence. Astrophys. J. Lett. 942, L34 (2023).
Grete, P., O’Shea, B. W., Beckwith, K., Schmidt, W. & Christlieb, A. Energy transfer in compressible magnetohydrodynamic turbulence. Phys. Plasmas 24, 092311 (2017).
Galtier, S. & Banerjee, S. Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107, 134501 (2011).
Beattie, J. R., Noer Kolborg, A., Ramirez-Ruiz, E. & Federrath, C. So long Kolmogorov: the forward and backward turbulence cascades in a supernovae-driven, multiphase interstellar medium. Preprint at https://arxiv.org/abs/2501.09855 (2025).
Lithwick, Y. & Goldreich, P. Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001).
Boldyrev, S. & Perez, J. C. Spectrum of weak magnetohydrodynamic turbulence. Phys. Rev. Lett. 103, 225001 (2009).
Colman, T. et al. The signature of large-scale turbulence driving on the structure of the interstellar medium. Mon. Not. R. Astron. Soc. 514, 3670–3684 (2022).
Raymond, J. C. et al. Turbulence and energetic particles in radiative shock waves in the Cygnus Loop. I. Shock properties. Astrophys. J. 894, 108 (2020).
Hosking, D. N., Schekochihin, A. A. & Balbus, S. A. Elasticity of tangled magnetic fields. J. Plasma Phys. 86, 905860511 (2020).
Galtier, S. Fast magneto-acoustic wave turbulence and the Iroshnikov–Kraichnan spectrum. J. Plasma Phys. 89, 905890205 (2023).
Arzoumanian, D. et al. Characterizing interstellar filaments with Herschel in IC5146. Astron. Astrophys. 529, L6 (2011).
André, P. J., Palmeirim, P. & Arzoumanian, D. The typical width of Herschel filaments. Astron. Astrophys. 667, L1 (2022).
Padoan, P. & Nordlund, Å The star formation rate of supersonic magnetohydrodynamic turbulence. Astrophys. J. 730, 40 (2011).
Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of tension: kinetic energy spectra in MHD turbulence. Astrophys. J. 909, 148 (2021).
Seta, A., Federrath, C., Livingston, J. D. & McClure-Griffiths, N. M. Rotation measure structure functions with higher-order stencils as a probe of small-scale magnetic fluctuations and its application to the Small and Large Magellanic Clouds. Mon. Not. R. Astron. Soc. 518, 919–944 (2023).
Anderson, C. S. et al. Early science from POSSUM: shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax Cluster. Publ. Astron. Soc. Aust. 38, e020 (2021).
Vanderwoude, S. et al. Prototype Faraday rotation measure catalogs from the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM) pilot observations. Astron. J. 167, 226 (2024).
Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).
Dubey, A. et al. in Numerical Modeling of Space Plasma Flows. Astronomical Society of the Pacific Conference Series Vol. 385 (eds Pogorelov, N. V. et al.) 145–150 (Astronomical Society of the Pacific, 2008).
Bouchut, F., Klingenberg, C. & Waagan, K. A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer. Math. 115, 647–679 (2010).
Waagan, K., Federrath, C. & Klingenberg, C. A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230, 3331–3351 (2011).
Eswaran, V. & Pope, S. B. An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988).
Schmidt, W., Federrath, C., Hupp, M., Kern, S. & Niemeyer, J. C. Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas. Astron. Astrophys. 494, 127–145 (2009).
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M. M. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81 (2010).
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M. M. TG: Turbulence Generator. Astrophysics Source Code Library ascl: 2204.001 (2022).
Federrath, C., Klessen, R. S. & Schmidt, W. The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688, L79 (2008).
Beattie, J. R., Federrath, C., Kriel, N., Mocz, P. & Seta, A. Growth or decay—I: universality of the turbulent dynamo saturation. Mon. Not. R. Astron. Soc. 524, 3201–3214 (2023).
Seta, A. & Federrath, C. Seed magnetic fields in turbulent small-scale dynamos. Mon. Not. R. Astron. Soc. 499, 2076–2086 (2020).
Federrath, C. Magnetic field amplification in turbulent astrophysical plasmas. J. Plasma Phys. 82, 535820601 (2016).
Price, D. J. & Federrath, C. A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. Mon. Not. R. Astron. Soc. 406, 1659–1674 (2010).
Beattie, J. R., Mocz, P., Federrath, C. & Klessen, R. S. The density distribution and physical origins of intermittency in supersonic, highly magnetized turbulence with diverse modes of driving. Mon. Not. R. Astron. Soc. 517, 5003–5031 (2022).
Kriel, N., Beattie, J. R., Seta, A. & Federrath, C. Fundamental scales in the kinematic phase of the turbulent dynamo. Mon. Not. R. Astron. Soc. 513, 2457–2470 (2022).
Shivakumar, L. M. & Federrath, C. Numerical viscosity and resistivity in MHD turbulence simulations. Mon. Not. R. Astron. Soc. 537, 2961–2986 (2025).
Cielo, S., Iapichino, L., Baruffa, F., Bugli, M. & Federrath, C. Honing and proofing astrophysical codes on the road to Exascale. Experiences from code modernization on many-core systems. Preprint at https://arxiv.org/abs/2002.08161 (2020).
Federrath, C. et al. Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. Phys. Rev. Lett. 107, 114504 (2011).
Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007).
Federrath, C. On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436, 1245–1257 (2013).
Grete, P., O’Shea, B. W. & Beckwith, K. As a matter of state: the role of thermodynamics in magnetohydrodynamic turbulence. Astrophys. J. 889, 19 (2020).
Bhattacharjee, A., Ng, C. S. & Spangler, S. R. Weakly compressible magnetohydrodynamic turbulence in the solar wind and the interstellar medium. Astrophys. J. 494, 409–418 (1998).
Beattie, J. R. et al. Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field. Mon. Not. R. Astron. Soc. 515, 5267–5284 (2022).
Perez, J. C. & Boldyrev, S. On weak and strong magnetohydrodynamic turbulence. Astrophys. J. Lett. 672, L61 (2008).
Meyrand, R., Galtier, S. & Kiyani, K. H. Direct evidence of the transition from weak to strong magnetohydrodynamic turbulence. Phys. Rev. Lett. 116, 105002 (2016).
Robertson, B. & Goldreich, P. Dense regions in supersonic isothermal turbulence. Astrophys. J. 854, 88 (2018).
Mocz, P. & Burkhart, B. Star formation from dense shocked regions in supersonic isothermal magnetoturbulence. Mon. Not. R. Astron. Soc. 480, 3916–3927 (2018).
Planck Collaboration et al. Planck intermediate results. XXXIV. The magnetic field structure in the Rosette Nebula. Astron. Astrophys. 586, A137 (2016).
Kempski, P. et al. A unified model of cosmic ray propagation and radio extreme scattering events from intermittent interstellar structures. Preprint at https://arxiv.org/abs/2412.03649 (2024).
Hopkins, P. F. A model for (non-lognormal) density distributions in isothermal turbulence. Mon. Not. R. Astron. Soc. 430, 1880–1891 (2013).
Mocz, P. & Burkhart, B. A Markov model for non-lognormal density distributions in compressive isothermal turbulence. Astrophys. J. Lett. 884, L35 (2019).
Loureiro, N. F. & Uzdensky, D. A. Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys. Control. Fusion 58, 014021 (2015).
Dong, C., Wang, L., Huang, Y.-M., Comisso, L. & Bhattacharjee, A. Role of the plasmoid instability in magnetohydrodynamic turbulence. Phys. Rev. Lett. 121, 165101 (2018).
Kempski, P. & Quataert, E. Reconciling cosmic ray transport theory with phenomenological models motivated by Milky-Way data. Mon. Not. R. Astron. Soc. 514, 657–674 (2022).
Kempski, P. et al. Cosmic ray transport in large-amplitude turbulence with small-scale field reversals. Mon. Not. R. Astron. Soc. 525, 4985–4998 (2023).
Butsky, I. S. et al. Galactic cosmic-ray scattering due to intermittent structures. Mon. Not. R. Astron. Soc. 528, 4245–4254 (2024).
Mininni, P., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).
Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).
Schekochihin, A. A. MHD turbulence: a biased review. J. Plasma Phys. 88, 155880501 (2022).
Chernoglazov, A., Ripperda, B. & Philippov, A. Dynamic alignment and plasmoid formation in relativistic magnetohydrodynamic turbulence. Astrophys. J. Lett. 923, L13 (2021).
Perez, J. C. & Boldyrev, S. Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 025003 (2009).
Acknowledgements
We acknowledge the useful discussions with D. Fielding, A. Chernoglazov and A. Beresnyak on the local anisotropy and alignment structure functions, and the more general discussions about this work with R. Bandyopadhyay, P. K.-S. Kempski, E. Quataert, A. Philippov, P. Mocz, B. Ripperda and C. Thompson. Funding: J.R.B. acknowledges financial support from the Australian National University (ANU), via the Deakin PhD and Dean’s Higher Degree Research (theoretical physics) Scholarships and the Australian Government via the Australian Government Research Training Program Fee-Offset Scholarship and the Australian Capital Territory Government-funded Fulbright scholarship. J.R.B., C.F., R.S.K. and S.C. also acknowledge high-performance computing resources provided by the Leibniz Rechenzentrum and the Gauss Centre for Supercomputing (GCS) grants pr32lo, pr73fi and GCS large-scale project 10391. C.F. acknowledges funding by the Australian Research Council (Discovery Projects grants DP230102280 and DP250101526) and the Australia–Germany Joint Research Cooperation Scheme (UA-DAAD). C.F. also acknowledges high-performance computing resources provided by the Australian National Computational Infrastructure (grant ek9) and the Pawsey Supercomputing Centre (project pawsey0810) in the framework of the National Computational Merit Allocation Scheme and the ANU Merit Allocation Scheme. R.S.K. acknowledges support from the European Research Council (ERC) via the ERC Synergy Grant ‘ECOGAL’ (project ID 855130), from the German Excellence Strategy via the Heidelberg Cluster of Excellence (EXC 2181 - 390900948) ‘STRUCTURES’, and from the German Ministry for Economic Affairs and Climate Action in project ‘MAINN’ (funding ID 50OO2206). R.S.K. also expresses thanks for local computing resources provided by the Ministry of Science, Research and the Arts (MWK) of The Länd through bwHPC and the German Science Foundation (DFG) through grant INST 35/1134-1 FUGG and 35/1597-1 FUGG, and also for data storage at SDS@hd funded through grants INST 35/1314-1 FUGG and INST 35/1503-1 FUGG. J.R.B. and A.B. also acknowledge the support from NSF Award 2206756.
Author information
Authors and Affiliations
Contributions
J.R.B. led the entirety of the project, including the GCS large-scale project 10391, ran the simulations, co-developed the FLASH code and analysis programs used in this study and led the writing and ideas presented in the manuscript. C.F. co-led the GCS large-scale project 10391, is the lead developer of the FLASH code and the analysis pipelines used in the study and contributed to the ideas presented in this study and the drafting of the manuscript. R.S.K. co-led the GCS large-scale project 10391, and contributed to the ideas presented in this study and drafting of the manuscript. S.C. provided technical advice and assistance during the GCS large-scale project proposal and during the runtime of the simulations, provided support visualizing the large datasets and contributed to the ideas presented in this study and the drafting of the manuscript. A.B. contributed to the ideas presented in this study and the drafting of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Beattie, J.R., Federrath, C., Klessen, R.S. et al. The spectrum of magnetized turbulence in the interstellar medium. Nat Astron 9, 1195–1205 (2025). https://doi.org/10.1038/s41550-025-02551-5
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02551-5


