Abstract
L chondrites are some of the most common meteorites retrieved on Earth. Their Ar–Ar collision ages indicate a major disruption of their parent body ~470 million years ago (Ma), which was followed by an intense meteorite shower on Earth that is linked to the Ordovician biological crisis. However, recent but previously scarce chronological and geochemical data on a few L chondrites hint at a more complex evolution of the parent body than a single, one-stage 470 Ma break-up. Here we conducted a unique coordinated mineralogical and geochronological study on eight shocked L chondrites, which showed a wide distribution of collisional ages at 4,500, 4,470, ~700, 470 and ~10 Ma. The lower-limit sizes of the parent body derived from shock timescales, combined with the orbital parameters and the aforementioned ages of the meteorites, indicate a complex collisional cascade endured by the parent body of the L chondrites, pointing towards several L chondrite sources in the asteroid main belt, namely, the Nysa–Polana, Juno, Gefion 2 and potentially Massalia asteroid families.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the findings of this study are openly available at https://doi.org/10.57760/sciencedb.06939 (ref. 67).
Code availability
The code that supports the findings of this study is openly available at https://doi.org/10.57760/sciencedb.06939 (ref. 67).
References
Johansen, A., Low, M. M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).
Wasson, J. T. Formation of ordinary chondrites. Rev. Geophys. 10, 711–759 (1972).
Gail, H. P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019).
Blackburn, T., Alexander, C. M. D., Carlson, R. & Elkins-Tanton, L. T. The accretion and impact history of the ordinary chondrite parent bodies. Geochim. Cosmochim. Acta 200, 201–217 (2017).
Lucas, M. P. et al. Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochim. Cosmochim. Acta 290, 366–390 (2020).
Bischoff, A. & Stoeffler, D. Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur. J. Mineral. 4, 707–755 (1992).
Martinez, M., Brearley, A. J., Trigo‐Rodríguez, J. M. & Llorca, J. New observations on high‐pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: insights into the shock behavior of diopside. Meteorit. Planet. Sci. 54, 2845–2863 (2019).
Rubin, A. E. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids. Geochim. Cosmochim. Acta 68, 673–689 (2004).
Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009).
Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).
Nesvorný, D., Morbidelli, A., Vokrouhlický, D., Bottke, W. F. & Brož, M. The Flora family: a case of the dynamically dispersed collisional swarm? Icarus 157, 155–172 (2002).
Meier, M. M. et al. Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteorit. Planet. Sci. 52, 1561–1576 (2017).
Gaffey, M. J. & Fieber‑Beyer, S. K. Is the (20) Massalia family the source of the L‑chondrites? In Proc. 50th Lunar and Planetary Science Conference Vol. 2132 1441 (LPI, 2019).
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).
Korochantseva, E. V. et al. L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorit. Planet. Sci. 42, 113–130 (2007).
Swindle, T. D., Kring, D. A. & Weirich, J. R. 40 Ar/39 Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Spec. Publ. 378, 333–347 (2014).
Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).
Meier, M. M., Schmitz, B., Lindskog, A., Maden, C. & Wieler, R. Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia. Geochim. Cosmochim. Acta 125, 338–350 (2014).
Heck, P. R. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017).
Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019).
Ciocco, M. et al. Impact dynamics of the L chondrites’ parent asteroid. Meteorit. Planet. Sci. 57, 759–775 (2022).
Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829–851 (Univ. Arizona Press, 2006).
Yin, Q. Z. et al. Records of the Moon‐forming impact and the 470 Ma disruption of the L chondrite parent body in the asteroid belt from U‐Pb apatite ages of Novato (L6). Meteorit. Planet. Sci. 49, 1426–1439 (2014).
Xie, X. et al. Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur. J. Mineral. 15, 1001–1005 (2003).
Xie, X., Zhai, S., Chen, M. & Yang, H. Tuite, γ‐Ca3(PO4)2, formed by chlorapatite decomposition in a shock vein of the Suizhou L6 chondrite. Meteorit. Planet. Sci. 48, 1515–1523 (2013).
Li, S. & Hsu, W. The nature of the L chondrite parent body’s disruption as deduced from high‐pressure phases in the Sixiangkou L6 chondrite. Meteorit. Planet. Sci. 53, 2107–2122 (2018).
Wu, Y. & Hsu, W. Petrogenesis and in situ U-Pb geochronology of a strongly shocked L-melt rock Northwest Africa 11042. J. Geophys. Res. Planets 124, 893–909 (2019).
Li, Y. & Hsu, W. Multiple impact events on the L‐chondritic parent body: insights from SIMS U‐Pb dating of Ca‐phosphates in the NWA 7251 L‐melt breccia. Meteorit. Planet. Sci. 53, 1081–1095 (2018).
Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023).
Lorenz, C. A. et al. Northwest Africa 6486: record of large impact events and fluid alteration on the L chondrite asteroid. Meteorit. Planet. Sci. 57, 48–76 (2022).
Llorca, J. et al. The Villalbeto de la Peña meteorite fall. I. Fireball energy, meteorite recovery, strewn field, and petrography. Meteorit. Planet. Sci. 40, 795–804 (2005).
Cochrane, R. et al. High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 127, 39–56 (2014).
Trigo-Rodríguez, J. M. Asteroid Impact Risk: Impact Hazard from Asteroids and Comets (Springer Nature, 2022).
de Sousa Ribeiro, R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).
Avdellidou, C., Delbo’, M., Nesvorný, D., Walsh, K. J. & Morbidelli, A. Dating the Solar System’s giant planet orbital instability using enstatite meteorites. Science 384, 348–352 (2024).
Beck, P., Gillet, P., El Goresy, A. & Mostefaoui, S. Timescales of shock processes in chondritic and Martian meteorites. Nature 435, 1071–1074 (2005).
Bottke, W. F. Jr, Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006).
Brož, M. et al. Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astron. Astrophys. 551, A117 (2013).
Terada, K., Morota, T. & Kato, M. Asteroid shower on the Earth–Moon system immediately before the Cryogenian period revealed by KAGUYA. Nat. Commun. 11, 3453 (2020).
Paolicchi, P., Spoto, F., Knežević, Z. & Milani, A. Ages of asteroid families estimated using the YORP-eye method. Mon. Not. R. Astron. Soc. 484, 1815–1828 (2019).
Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015).
Carruba, V. & Nesvorný, D. Constraints on the original ejection velocity fields of asteroid families. Mon. Not. R. Astron. Soc. 457, 1332–1338 (2016).
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).
Bogard, D. D., Husain, L. & Wright, R. J. 40Ar–39Ar dating of collisional events in chondrite parent bodies. J. Geophys. Res. 81, 5664–5678 (1976).
Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).
Deloule, E., Chaussidon, M. & Allé, P. Instrumental limitations for isotope measurements with a Caméca® ims-3f ion microprobe: example of H, B, S and Sr. Chem. Geol.: Isot. Geosci. Sect. 101, 187–192 (1992).
Chew, D. M. et al. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 435, 35–48 (2016).
Schoene, B. & Bowring, S. A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615–630 (2006).
Stacey, J. T. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).
Ludwig, K. R. User’s manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 5, 75 (2012).
D’Agostino, R. B., Belanger, A. & D’Agostino, R. B. Jr A suggestion for using powerful and informative tests of normality. Am. Stat. 44, 316–321 (1990).
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
D’Agostino, R. & Pearson, E. S. Tests for departure from normality. Biometrika 60, 613–622 (1973).
Berger, V. W. & Zhou, Y. Kolmogorov–Smirnov test: overview. Wiley StatsRef https://doi.org/10.1002/9781118445112.stat06558 (2014).
Teukolsky, S. A., Flannery, B. P., Press, W. H. & Vetterling, W. T. Numerical Recipes in C (Cambridge Univ. Press, 1992).
Cellino, A. et al. The puzzling case of the Nysa–Polana family. Icarus 152, 225–237 (2001).
Walsh, K. J., Delbó, M., Bottke, W. F., Vokrouhlický, D. & Lauretta, D. S. Introducing the Eulalia and new Polana asteroid families: re-assessing primitive asteroid families in the inner main belt. Icarus 225, 283–297 (2013).
Gayon-Markt, J. et al. Asteroid spectroscopy with Gaia. Planet. Space Sci. 73, 86–94 (2012).
Dykhuis, M. J. & Greenberg, R. Collisional family structure within the Nysa–Polana complex. Icarus 252, 199–211 (2015).
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–322 (Univ. Arizona Press, 2015).
DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).
Delbo’, M., Walsh, K., Bolin, B., Avdellidou, C. & Morbidelli, A. Identification of a primordial asteroid family constrains the original planetesimal population. Science 357, 1026–1029 (2017).
Galluccio, L. et al. Gaia Data Release 3: reflectance spectra of Solar System small bodies. Astron. Astrophys. 674, A35 (2022).
Bolin, B. T., Delbo, M., Morbidelli, A. & Walsh, K. J. Yarkovsky V-shape identification of asteroid families. Icarus 282, 290–312 (2017).
Bottke, W. F., DeMeo, F. E. & Michel, P. in Asteroids IV (eds Michel, P. et al.) 509–532 (Univ. Arizona Press, 2015).
Delbo, M., Avdellidou, C. & Morbidelli, A. Ancient and primordial collisional families as the main sources of X-type asteroids of the inner main belt. Astron. Astrophys. 624, A69 (2019).
Ciocco, M. et al. A collisional history of the L chondrite parent bodies—dataset. ScienceDB https://doi.org/10.57760/sciencedb.06939 (2025).
Wetherill, G. W. Discordant uranium-lead ages I. Eos 37, 320–326 (1956).
Acknowledgements
We thank L. Marié from the CEREGE for engineering Tenham and Beni M’Hira sections and A. Bischoff and the Institut für Planetologie for lending most of the sections (all except Sixiangkou, Beni m’Hira and two of the Tenham sections), as well as A. Rubin and the University of California, Los Angeles, for lending the Sixiangkou section. We thank O. Beyssac for his assistance with the Raman spectrometry. We thank L. Remusat and P. Beck for their advice on the presentation of the results. We thank N. Bouden and J. Villeneuve for assisting with the SIMS analyses. Support was granted by the French ‘Classy’ ANR (Grant Number ANR-17-CE31-0004) to M.R. and ANR ORIGINS (Grant Number ANR18-CE31-0014), the Programme National de Planétologie and the French space agency CNES to M.D. This work has made use of data from the Asteroid Family Portal, the JPL Small Body Database and the Minor Planet Physical Properties Catalogues MP3C.
Author information
Authors and Affiliations
Contributions
M.C., M.R., M.G., M.D. and E.D. contributed to the redaction of the paper. M.C., M.R., G.F. and M.G. developed the study. M.C. and B.D. acquired the scanning electron microscopy maps. M.C. acquired the Raman spectra. E.D. performed the SIMS analyses with assistance from M.C. M.D. produced the age model and statistical codes and analysed the asteroidal spectra.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Josep Trigo-Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1, Figs. 1–11 and Sections I–V.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ciocco, M., Roskosz, M., Doisneau, B. et al. A collisional history of the L chondrite parent bodies. Nat Astron 9, 1455–1463 (2025). https://doi.org/10.1038/s41550-025-02615-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02615-6


