Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A collisional history of the L chondrite parent bodies

Abstract

L chondrites are some of the most common meteorites retrieved on Earth. Their Ar–Ar collision ages indicate a major disruption of their parent body ~470 million years ago (Ma), which was followed by an intense meteorite shower on Earth that is linked to the Ordovician biological crisis. However, recent but previously scarce chronological and geochemical data on a few L chondrites hint at a more complex evolution of the parent body than a single, one-stage 470 Ma break-up. Here we conducted a unique coordinated mineralogical and geochronological study on eight shocked L chondrites, which showed a wide distribution of collisional ages at 4,500, 4,470, ~700, 470 and ~10 Ma. The lower-limit sizes of the parent body derived from shock timescales, combined with the orbital parameters and the aforementioned ages of the meteorites, indicate a complex collisional cascade endured by the parent body of the L chondrites, pointing towards several L chondrite sources in the asteroid main belt, namely, the Nysa–Polana, Juno, Gefion 2 and potentially Massalia asteroid families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of Wetherill concordias for Acfer 040 and Sahara 99016.
Fig. 2: Distribution of the upper-intercept ages.
Fig. 3: Distribution of the lower-intercept ages.
Fig. 4: Summary of the proposed collisional history of the L chondrite parent body.

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available at https://doi.org/10.57760/sciencedb.06939 (ref. 67).

Code availability

The code that supports the findings of this study is openly available at https://doi.org/10.57760/sciencedb.06939 (ref. 67).

References

  1. Johansen, A., Low, M. M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).

    ADS  Google Scholar 

  2. Wasson, J. T. Formation of ordinary chondrites. Rev. Geophys. 10, 711–759 (1972).

    ADS  Google Scholar 

  3. Gail, H. P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019).

    Google Scholar 

  4. Blackburn, T., Alexander, C. M. D., Carlson, R. & Elkins-Tanton, L. T. The accretion and impact history of the ordinary chondrite parent bodies. Geochim. Cosmochim. Acta 200, 201–217 (2017).

    ADS  Google Scholar 

  5. Lucas, M. P. et al. Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochim. Cosmochim. Acta 290, 366–390 (2020).

    ADS  Google Scholar 

  6. Bischoff, A. & Stoeffler, D. Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur. J. Mineral. 4, 707–755 (1992).

    ADS  Google Scholar 

  7. Martinez, M., Brearley, A. J., Trigo‐Rodríguez, J. M. & Llorca, J. New observations on high‐pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: insights into the shock behavior of diopside. Meteorit. Planet. Sci. 54, 2845–2863 (2019).

    ADS  Google Scholar 

  8. Rubin, A. E. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids. Geochim. Cosmochim. Acta 68, 673–689 (2004).

    ADS  Google Scholar 

  9. Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009).

    ADS  Google Scholar 

  10. Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).

    ADS  Google Scholar 

  11. Nesvorný, D., Morbidelli, A., Vokrouhlický, D., Bottke, W. F. & Brož, M. The Flora family: a case of the dynamically dispersed collisional swarm? Icarus 157, 155–172 (2002).

    ADS  Google Scholar 

  12. Meier, M. M. et al. Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteorit. Planet. Sci. 52, 1561–1576 (2017).

    ADS  Google Scholar 

  13. Gaffey, M. J. & Fieber‑Beyer, S. K. Is the (20) Massalia family the source of the L‑chondrites? In Proc. 50th Lunar and Planetary Science Conference Vol. 2132 1441 (LPI, 2019).

  14. Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).

    ADS  Google Scholar 

  15. Korochantseva, E. V. et al. L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorit. Planet. Sci. 42, 113–130 (2007).

    ADS  Google Scholar 

  16. Swindle, T. D., Kring, D. A. & Weirich, J. R. 40 Ar/39 Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Spec. Publ. 378, 333–347 (2014).

    ADS  Google Scholar 

  17. Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).

    ADS  Google Scholar 

  18. Meier, M. M., Schmitz, B., Lindskog, A., Maden, C. & Wieler, R. Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia. Geochim. Cosmochim. Acta 125, 338–350 (2014).

    ADS  Google Scholar 

  19. Heck, P. R. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017).

    Google Scholar 

  20. Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019).

    ADS  Google Scholar 

  21. Ciocco, M. et al. Impact dynamics of the L chondrites’ parent asteroid. Meteorit. Planet. Sci. 57, 759–775 (2022).

    ADS  Google Scholar 

  22. Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829–851 (Univ. Arizona Press, 2006).

  23. Yin, Q. Z. et al. Records of the Moon‐forming impact and the 470 Ma disruption of the L chondrite parent body in the asteroid belt from U‐Pb apatite ages of Novato (L6). Meteorit. Planet. Sci. 49, 1426–1439 (2014).

    ADS  Google Scholar 

  24. Xie, X. et al. Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur. J. Mineral. 15, 1001–1005 (2003).

    ADS  Google Scholar 

  25. Xie, X., Zhai, S., Chen, M. & Yang, H. Tuite, γ‐Ca3(PO4)2, formed by chlorapatite decomposition in a shock vein of the Suizhou L6 chondrite. Meteorit. Planet. Sci. 48, 1515–1523 (2013).

  26. Li, S. & Hsu, W. The nature of the L chondrite parent body’s disruption as deduced from high‐pressure phases in the Sixiangkou L6 chondrite. Meteorit. Planet. Sci. 53, 2107–2122 (2018).

    ADS  Google Scholar 

  27. Wu, Y. & Hsu, W. Petrogenesis and in situ U-Pb geochronology of a strongly shocked L-melt rock Northwest Africa 11042. J. Geophys. Res. Planets 124, 893–909 (2019).

    ADS  Google Scholar 

  28. Li, Y. & Hsu, W. Multiple impact events on the L‐chondritic parent body: insights from SIMS U‐Pb dating of Ca‐phosphates in the NWA 7251 L‐melt breccia. Meteorit. Planet. Sci. 53, 1081–1095 (2018).

    ADS  Google Scholar 

  29. Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023).

    ADS  Google Scholar 

  30. Lorenz, C. A. et al. Northwest Africa 6486: record of large impact events and fluid alteration on the L chondrite asteroid. Meteorit. Planet. Sci. 57, 48–76 (2022).

    ADS  Google Scholar 

  31. Llorca, J. et al. The Villalbeto de la Peña meteorite fall. I. Fireball energy, meteorite recovery, strewn field, and petrography. Meteorit. Planet. Sci. 40, 795–804 (2005).

    ADS  Google Scholar 

  32. Cochrane, R. et al. High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 127, 39–56 (2014).

    ADS  Google Scholar 

  33. Trigo-Rodríguez, J. M. Asteroid Impact Risk: Impact Hazard from Asteroids and Comets (Springer Nature, 2022).

  34. de Sousa Ribeiro, R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).

    Google Scholar 

  35. Avdellidou, C., Delbo’, M., Nesvorný, D., Walsh, K. J. & Morbidelli, A. Dating the Solar System’s giant planet orbital instability using enstatite meteorites. Science 384, 348–352 (2024).

    ADS  Google Scholar 

  36. Beck, P., Gillet, P., El Goresy, A. & Mostefaoui, S. Timescales of shock processes in chondritic and Martian meteorites. Nature 435, 1071–1074 (2005).

    ADS  Google Scholar 

  37. Bottke, W. F. Jr, Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006).

    ADS  Google Scholar 

  38. Brož, M. et al. Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astron. Astrophys. 551, A117 (2013).

    Google Scholar 

  39. Terada, K., Morota, T. & Kato, M. Asteroid shower on the Earth–Moon system immediately before the Cryogenian period revealed by KAGUYA. Nat. Commun. 11, 3453 (2020).

    ADS  Google Scholar 

  40. Paolicchi, P., Spoto, F., Knežević, Z. & Milani, A. Ages of asteroid families estimated using the YORP-eye method. Mon. Not. R. Astron. Soc. 484, 1815–1828 (2019).

    ADS  Google Scholar 

  41. Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015).

    ADS  Google Scholar 

  42. Carruba, V. & Nesvorný, D. Constraints on the original ejection velocity fields of asteroid families. Mon. Not. R. Astron. Soc. 457, 1332–1338 (2016).

    ADS  Google Scholar 

  43. Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).

    ADS  Google Scholar 

  44. Bogard, D. D., Husain, L. & Wright, R. J. 40Ar–39Ar dating of collisional events in chondrite parent bodies. J. Geophys. Res. 81, 5664–5678 (1976).

    ADS  Google Scholar 

  45. Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).

    Google Scholar 

  46. Deloule, E., Chaussidon, M. & Allé, P. Instrumental limitations for isotope measurements with a Caméca® ims-3f ion microprobe: example of H, B, S and Sr. Chem. Geol.: Isot. Geosci. Sect. 101, 187–192 (1992).

    Google Scholar 

  47. Chew, D. M. et al. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 435, 35–48 (2016).

    ADS  Google Scholar 

  48. Schoene, B. & Bowring, S. A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615–630 (2006).

    ADS  Google Scholar 

  49. Stacey, J. T. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

  50. Ludwig, K. R. User’s manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 5, 75 (2012).

    Google Scholar 

  51. D’Agostino, R. B., Belanger, A. & D’Agostino, R. B. Jr A suggestion for using powerful and informative tests of normality. Am. Stat. 44, 316–321 (1990).

    Google Scholar 

  52. Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet  Google Scholar 

  53. D’Agostino, R. & Pearson, E. S. Tests for departure from normality. Biometrika 60, 613–622 (1973).

    MathSciNet  Google Scholar 

  54. Berger, V. W. & Zhou, Y. Kolmogorov–Smirnov test: overview. Wiley StatsRef https://doi.org/10.1002/9781118445112.stat06558 (2014).

  55. Teukolsky, S. A., Flannery, B. P., Press, W. H. & Vetterling, W. T. Numerical Recipes in C (Cambridge Univ. Press, 1992).

  56. Cellino, A. et al. The puzzling case of the Nysa–Polana family. Icarus 152, 225–237 (2001).

    ADS  Google Scholar 

  57. Walsh, K. J., Delbó, M., Bottke, W. F., Vokrouhlický, D. & Lauretta, D. S. Introducing the Eulalia and new Polana asteroid families: re-assessing primitive asteroid families in the inner main belt. Icarus 225, 283–297 (2013).

    ADS  Google Scholar 

  58. Gayon-Markt, J. et al. Asteroid spectroscopy with Gaia. Planet. Space Sci. 73, 86–94 (2012).

    ADS  Google Scholar 

  59. Dykhuis, M. J. & Greenberg, R. Collisional family structure within the Nysa–Polana complex. Icarus 252, 199–211 (2015).

    ADS  Google Scholar 

  60. Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–322 (Univ. Arizona Press, 2015).

  61. DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    ADS  Google Scholar 

  62. Delbo’, M., Walsh, K., Bolin, B., Avdellidou, C. & Morbidelli, A. Identification of a primordial asteroid family constrains the original planetesimal population. Science 357, 1026–1029 (2017).

    ADS  Google Scholar 

  63. Galluccio, L. et al. Gaia Data Release 3: reflectance spectra of Solar System small bodies. Astron. Astrophys. 674, A35 (2022).

    Google Scholar 

  64. Bolin, B. T., Delbo, M., Morbidelli, A. & Walsh, K. J. Yarkovsky V-shape identification of asteroid families. Icarus 282, 290–312 (2017).

    ADS  Google Scholar 

  65. Bottke, W. F., DeMeo, F. E. & Michel, P. in Asteroids IV (eds Michel, P. et al.) 509–532 (Univ. Arizona Press, 2015).

  66. Delbo, M., Avdellidou, C. & Morbidelli, A. Ancient and primordial collisional families as the main sources of X-type asteroids of the inner main belt. Astron. Astrophys. 624, A69 (2019).

    ADS  Google Scholar 

  67. Ciocco, M. et al. A collisional history of the L chondrite parent bodies—dataset. ScienceDB https://doi.org/10.57760/sciencedb.06939 (2025).

  68. Wetherill, G. W. Discordant uranium-lead ages I. Eos 37, 320–326 (1956).

    Google Scholar 

Download references

Acknowledgements

We thank L. Marié from the CEREGE for engineering Tenham and Beni M’Hira sections and A. Bischoff and the Institut für Planetologie for lending most of the sections (all except Sixiangkou, Beni m’Hira and two of the Tenham sections), as well as A. Rubin and the University of California, Los Angeles, for lending the Sixiangkou section. We thank O. Beyssac for his assistance with the Raman spectrometry. We thank L. Remusat and P. Beck for their advice on the presentation of the results. We thank N. Bouden and J. Villeneuve for assisting with the SIMS analyses. Support was granted by the French ‘Classy’ ANR (Grant Number ANR-17-CE31-0004) to M.R. and ANR ORIGINS (Grant Number ANR18-CE31-0014), the Programme National de Planétologie and the French space agency CNES to M.D. This work has made use of data from the Asteroid Family Portal, the JPL Small Body Database and the Minor Planet Physical Properties Catalogues MP3C.

Author information

Authors and Affiliations

Authors

Contributions

M.C., M.R., M.G., M.D. and E.D. contributed to the redaction of the paper. M.C., M.R., G.F. and M.G. developed the study. M.C. and B.D. acquired the scanning electron microscopy maps. M.C. acquired the Raman spectra. E.D. performed the SIMS analyses with assistance from M.C. M.D. produced the age model and statistical codes and analysed the asteroidal spectra.

Corresponding author

Correspondence to Marine Ciocco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Josep Trigo-Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs. 1–11 and Sections I–V.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciocco, M., Roskosz, M., Doisneau, B. et al. A collisional history of the L chondrite parent bodies. Nat Astron 9, 1455–1463 (2025). https://doi.org/10.1038/s41550-025-02615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02615-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing