Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The revolution in strong lensing discoveries from Euclid

Abstract

Strong gravitational lensing offers a powerful and direct probe of dark matter, galaxy evolution and cosmology, yet strong lenses are rare: only 1 in roughly 10,000 massive galaxies can lens a background source into multiple images. The European Space Agency’s Euclid telescope, with its unique combination of high-resolution imaging and wide-area sky coverage, is set to transform this field. In its first quick data release, covering just 0.45% of the full survey area, around 500 high-quality strong lens candidates have been identified using a synergy of machine learning, citizen science and expert visual inspection. This dataset includes exotic systems such as compound lenses and edge-on disk lenses, demonstrating Euclid’s capacity to probe the lens parameter space. The machine learning models developed to discover strong lenses in Euclid data are able to find lenses with high purity rates, confirming that the mission’s forecast of discovering over 100,000 strong lenses is achievable during its 6-year mission. This will increase the number of known strong lenses by two orders of magnitude, transforming the science that can be done with strong lensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An Einstein ring embedded in the nearby galaxy NGC 6505 imaged by Euclid.
Fig. 2: The density of strong lenses against the survey area for different lens searches.
Fig. 3: An example strong lens found in a Euclid tile.
Fig. 4: Examples of strong lenses discovered in Euclid Q1.
Fig. 5: A mosaic of 12 Euclid lensed galaxies and their corresponding reconstructed sources.
Fig. 6: The different types of strong lenses found by the fine-tuned Zoobot model.

Similar content being viewed by others

References

  1. Zwicky, F. Nebulae as gravitational lenses. Phys. Rev. 51, 290 (1937).

    Article  ADS  Google Scholar 

  2. Einstein, A. Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936).

    Article  ADS  Google Scholar 

  3. O’Riordan, C. M. et al. Euclid: a complete Einstein ring in NGC 6505. Astron. Astrophys. 694, A145 (2025).

    Article  Google Scholar 

  4. Shajib, A. J., Treu, T., Birrer, S. & Sonnenfeld, A. Dark matter haloes of massive elliptical galaxies at z ~ 0.2 are well described by the Navarro-Frenk-White profile. Mon. Not. R. Astron. Soc. 503, 2380–2405 (2021).

    Article  ADS  Google Scholar 

  5. Newman, A. B., Ellis, R. S. & Treu, T. Luminous and dark matter profiles from galaxies to clusters: bridging the gap with group-scale lenses. Astrophys. J. 814, 26 (2015).

    Article  ADS  Google Scholar 

  6. Sonnenfeld, A. & Cautun, M. Statistical strong lensing. I. Constraints on the inner structure of galaxies from samples of a thousand lenses. Astron. Astrophys. 651, A18 (2021).

    Article  ADS  Google Scholar 

  7. Wang, K. et al. Measuring the stellar-to-halo mass relation at ~1010 solar masses, using space-based imaging of galaxy-galaxy strong lenses. Preprint at https://arxiv.org/abs/2501.16139 (2025).

  8. Nightingale, J. W. et al. Abell 1201: detection of an ultramassive black hole in a strong gravitational lens. Mon. Not. R. Astron. Soc. 521, 3298–3322 (2023).

    Article  ADS  Google Scholar 

  9. Melo-Carneiro, Carlos R. et al. Unveiling a 36 billion solar mass black hole at the centre of the cosmic horseshoe gravitational lens. Preprint at https://arxiv.org/abs/2502.13788 (2025).

  10. Hogg, N. B., Fleury, P., Larena, J. & Martinelli, M. Measuring line-of-sight shear with Einstein rings: a proof of concept. Mon. Not. R. Astron. Soc. 520, 5982–6000 (2023).

    Article  ADS  Google Scholar 

  11. Birrer, S., Refregier, A. & Amara, A. Cosmic shear with Einstein rings. Astrophys. J. Lett. 852, L14 (2018).

    Article  ADS  Google Scholar 

  12. Etherington, A. et al. Strong gravitational lensing’s ‘external shear’ is not shear. Mon. Not. R. Astron. Soc. 531, 3684–3697 (2024).

    Article  ADS  Google Scholar 

  13. Li, T., Collett, T. E., Krawczyk, C. M. & Enzi, W. Cosmology from large populations of galaxy-galaxy strong gravitational lenses. Mon. Not. R. Astron. Soc. 527, 5311–5323 (2024).

    Article  ADS  Google Scholar 

  14. Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T. & Gavazzi, R. Detection of a dark substructure through gravitational imaging. Mon. Not. R. Astron. Soc. 408, 1969–1981 (2010).

    Article  ADS  Google Scholar 

  15. Vegetti, S. et al. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 481, 341–343 (2012).

    Article  ADS  Google Scholar 

  16. Hezaveh, Y. D. et al. Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81. Astrophys. J. 823, 37 (2016).

    Article  ADS  Google Scholar 

  17. Minor, Q., Gad-Nasr, S., Kaplinghat, M. & Vegetti, S. An unexpected high concentration for the dark substructure in the gravitational lens SDSSJ0946+1006. Mon. Not. R. Astron. Soc. 507, 1662–1683 (2021).

    Article  ADS  Google Scholar 

  18. Ballard, D. J., Enzi, W. J. R., Collett, T. E., Turner, H. C. & Smith, R. J. Gravitational imaging through a triple source plane lens: revisiting the ΛCDM-defying dark subhalo in SDSSJ0946+1006. Mon. Not. R. Astron. Soc. 528, 7564–7586 (2024).

    Article  ADS  Google Scholar 

  19. Despali, G. et al. Detecting low-mass haloes with strong gravitational lensing. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202451546 (2024).

  20. Enzi, W. J. R., Krawczyk, C. M., Ballard, D. J. & Collett, T. E. The overconcentrated dark halo in the strong lens SDSS J0946+1006 is a subhalo: evidence for self interacting dark matter? Mon. Not. R. Astron. Soc. 540, 247–263 (2025).

  21. Orban de Xivry, G. & Marshall, P. An atlas of predicted exotic gravitational lenses. Mon. Not. R. Astron. Soc. 399, 2–20 (2009).

    Article  ADS  Google Scholar 

  22. Treu, T. et al. The SWELLS survey–I. A large spectroscopically selected sample of edge-on late-type lens galaxies. Mon. Not. R. Astron. Soc. 417, 1601–1620 (2011).

    Article  ADS  Google Scholar 

  23. Acevedo Barroso, J. A. et al. Searching for strong lensing by late-type galaxies in UNIONS. Preprint at https://arxiv.org/abs/2503.10610 (2025).

  24. Wong, K. C. et al. H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498, 1420–1439 (2020).

    Article  ADS  Google Scholar 

  25. Collett, T. E. The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys. Astrophys. J. 811, 20 (2015).

    Article  ADS  Google Scholar 

  26. Euclid Collaboration: Mellier, Y. et al. Euclid: I. Overview of the Euclid mission. Astron. Astrophys. 697, A1 (2025).

    Article  Google Scholar 

  27. Euclid Collaboration et al. Euclid Quick Data Release (Q1): the strong lensing discovery engine A: system overview and lens catalogue. Preprint at https://arxiv.org/abs/2503.15324 (2025).

  28. Walsh, D., Carswell, R. F. & Weymann, R. J. 0957+561 A, B: twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979).

    Article  ADS  Google Scholar 

  29. Marshall, P. J. et al. SPACE WARPS–I. Crowdsourcing the discovery of gravitational lenses. Mon. Not. R. Astron. Soc. 455, 1171–1190 (2016).

    Article  ADS  Google Scholar 

  30. More, A. et al. SPACE WARPS–II. New gravitational lens candidates from the CFHTLS discovered through citizen science. Mon. Not. R. Astron. Soc. 455, 1191–1210 (2016).

    Article  ADS  Google Scholar 

  31. Garvin, E. O. et al. Hubble Asteroid Hunter. II. Identifying strong gravitational lenses in HST images with crowdsourcing. Astron. Astrophys. 667, A141 (2022).

    Article  Google Scholar 

  32. Jacobs, C. et al. An extended catalog of galaxy-galaxy strong gravitational lenses discovered in DES using convolutional neural networks. Astrophys. J. Suppl. Ser. 243, 17 (2019).

    Article  ADS  Google Scholar 

  33. Rojas, K. et al. Search of strong lens systems in the Dark Energy Survey using convolutional neural networks. Astron. Astrophys. 668, A73 (2022).

    Article  Google Scholar 

  34. Cañameras, R. et al. HOLISMOKES. II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks. Astron. Astrophys. 644, A163 (2020).

    Article  Google Scholar 

  35. Cañameras, R. et al. HOLISMOKES. VI. New galaxy-scale strong lens candidates from the HSC-SSP imaging survey. Astron. Astrophys. 653, L6 (2021).

    Article  ADS  Google Scholar 

  36. Storfer, C. et al. New strong gravitational lenses from the DESI Legacy Imaging Surveys Data Release 9. Astrophys. J. Suppl. Ser. 274, 16 (2024).

    Article  Google Scholar 

  37. Gonzalez, J. et al. Discovering strong gravitational lenses in the Dark Energy Survey with interactive machine learning and crowd-sourced inspection with Space Warps. Preprint at https://arxiv.org/abs/2501.15679 (2025).

  38. Jackson, N. Gravitational lenses and lens candidates identified from the COSMOS field. Mon. Not. R. Astron. Soc. 389, 1311–1318 (2008).

    Article  ADS  Google Scholar 

  39. Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine C: finding lenses with machine learning. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202554542 (2025).

  40. Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine B: early strong lens candidates from visual inspection of high velocity dispersion galaxies. Preprint at https://arxiv.org/abs/2503.15325 (2025).

  41. Walmsley, M. et al. Zoobot: adaptable deep learning models for galaxy morphology. J. Open Source Softw. 8, 5312 (2023).

    Article  ADS  Google Scholar 

  42. Pearce-Casey, R. et al. Euclid: searches for strong gravitational lenses using convolutional neural nets in Early Release Observations of the Perseus field. Astron. Astrophys. 696, A214 (2025).

    Article  Google Scholar 

  43. Nightingale, J. W. et al. ‘PyAutoLens’: Open-source strong gravitational lensing. J. Open Source Softw. 6, 2825 (2021).

    Article  ADS  Google Scholar 

  44. Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine D: double-source-plane lens candidates. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202554543 (2025).

  45. O’Riordan, C. M., Despali, G., Vegetti, S., Lovell, M. R. & Moliné, Á. Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid. Mon. Not. R. Astron. Soc. 521, 2342–2356 (2023).

    Article  ADS  Google Scholar 

  46. Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine E: ensemble classification of strong gravitational lenses: lessons for Data Release 1. Preprint at https://arxiv.org/abs/2503.15328 (2025).

  47. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  48. Sainz de Murieta, A. et al. Find the haystacks, then look for needles: the rate of strongly lensed supernovae in galaxy-galaxy strong gravitational lenses. Mon. Not. R. Astron. Soc. 535, 2523–2537 (2024).

    Article  Google Scholar 

  49. Shajib, A. J. et al. Strong gravitational lenses from the Vera C. Rubin Observatory. Phil. Trans. R. Soc. A 383, 20240117 (2025).

    Article  Google Scholar 

  50. Nightingale, J. et al. The COSMOS-Web Lens Survey (COWLS) I: discovery of >100 high redshift strong lenses in contiguous JWST imaging. Preprint at https://arxiv.org/abs/2503.08777 (2025).

  51. Mahler, G. et al. The COSMOS-Web Lens Survey (COWLS) II: depth, resolution, and NIR coverage from JWST reveal 17 spectacular lenses. Preprint at https://arxiv.org/abs/2503.08782 (2025).

  52. Faure, C. et al. First catalog of strong lens candidates in the COSMOS field. Astrophys. J. Suppl. Ser. 176, 19–38 (2008).

    Article  ADS  Google Scholar 

  53. Gavazzi, R., Marshall, P. J., Treu, T. & Sonnenfeld, A. RINGFINDER: automated detection of galaxy-scale gravitational lenses in ground-based multi-filter imaging data. Astrophys. J. 785, 144 (2014).

    Article  ADS  Google Scholar 

  54. Sonnenfeld, A. et al. Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publ. Astron. Soc. Jpn 70, S29 (2018).

    Article  Google Scholar 

  55. Sonnenfeld, A. et al. Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps. Astron. Astrophys. 642, A148 (2020).

    Article  Google Scholar 

  56. Shu, Y. et al. HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program. Astron. Astrophys. 662, A4 (2022).

    Article  Google Scholar 

  57. Wong, K. C. et al. Survey of gravitationally lensed objects in HSC imaging (SuGOHI). VIII. New galaxy-scale lenses from the HSC SSP. Publ. Astron. Soc. Jpn 74, 1209–1219 (2022).

    Article  ADS  Google Scholar 

  58. Jaelani, A. T. et al. Survey of gravitationally lensed objects in HSC imaging (SuGOHI): X. Strong lens finding in the HSC-SSP using convolutional neural networks. Mon. Not. R. Astron. Soc. 535, 1625–1639 (2024).

    Article  Google Scholar 

  59. Schuldt, S. et al. HOLISMOKES: XIII. Strong-lens candidates at all mass scales and their environments from the Hyper-Suprime Cam and deep learning. Astron. Astrophys. 693, A291 (2025).

    Article  Google Scholar 

  60. Schuldt, S. et al. HOLISMOKES XVI: lens search in HSC-PDR3 with a neural network committee and post-processing for false-positive removal. Astron. Astrophys. 699, A350 (2025).

    Article  Google Scholar 

  61. Huang, X. et al. Finding strong gravitational lenses in the DESI DECam Legacy Survey. Astrophys. J. 894, 78 (2020).

    Article  ADS  Google Scholar 

  62. Huang, X. et al. Discovering new strong gravitational lenses in the DESI Legacy Imaging Surveys. Astrophys. J. 909, 27 (2021).

    Article  ADS  Google Scholar 

  63. Savary, E. et al. Strong lensing in UNIONS: toward a pipeline from discovery to modeling. Astron. Astrophys. 666, A1 (2022).

    Article  Google Scholar 

  64. Li, R. et al. High-quality strong lens candidates in the final Kilo-Degree survey footprint. Astrophys. J. 923, 16 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Euclid is an ESA mission with major contributions from the Euclid Consortium, consisting of more than 2,000 scientists, engineers and technicians from 15 European countries, the USA, Canada and Japan.

Author information

Authors and Affiliations

Authors

Contributions

N.L. led the structuring of the text, wrote the initial version of the manuscript and produced Figs. 3, 4 and 6. T.L. produced Fig. 1. M.W. produced Fig. 2. J.N. produced Fig. 5. All authors contributed to the research discussed, reviewed the full text and edited the manuscript.

Corresponding author

Correspondence to Natalie E. P. Lines.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lines, N.E.P., Li, T., Collett, T.E. et al. The revolution in strong lensing discoveries from Euclid. Nat Astron 9, 1116–1122 (2025). https://doi.org/10.1038/s41550-025-02616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02616-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing