Abstract
Strong gravitational lensing offers a powerful and direct probe of dark matter, galaxy evolution and cosmology, yet strong lenses are rare: only 1 in roughly 10,000 massive galaxies can lens a background source into multiple images. The European Space Agency’s Euclid telescope, with its unique combination of high-resolution imaging and wide-area sky coverage, is set to transform this field. In its first quick data release, covering just 0.45% of the full survey area, around 500 high-quality strong lens candidates have been identified using a synergy of machine learning, citizen science and expert visual inspection. This dataset includes exotic systems such as compound lenses and edge-on disk lenses, demonstrating Euclid’s capacity to probe the lens parameter space. The machine learning models developed to discover strong lenses in Euclid data are able to find lenses with high purity rates, confirming that the mission’s forecast of discovering over 100,000 strong lenses is achievable during its 6-year mission. This will increase the number of known strong lenses by two orders of magnitude, transforming the science that can be done with strong lensing.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Zwicky, F. Nebulae as gravitational lenses. Phys. Rev. 51, 290 (1937).
Einstein, A. Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936).
O’Riordan, C. M. et al. Euclid: a complete Einstein ring in NGC 6505. Astron. Astrophys. 694, A145 (2025).
Shajib, A. J., Treu, T., Birrer, S. & Sonnenfeld, A. Dark matter haloes of massive elliptical galaxies at z ~ 0.2 are well described by the Navarro-Frenk-White profile. Mon. Not. R. Astron. Soc. 503, 2380–2405 (2021).
Newman, A. B., Ellis, R. S. & Treu, T. Luminous and dark matter profiles from galaxies to clusters: bridging the gap with group-scale lenses. Astrophys. J. 814, 26 (2015).
Sonnenfeld, A. & Cautun, M. Statistical strong lensing. I. Constraints on the inner structure of galaxies from samples of a thousand lenses. Astron. Astrophys. 651, A18 (2021).
Wang, K. et al. Measuring the stellar-to-halo mass relation at ~1010 solar masses, using space-based imaging of galaxy-galaxy strong lenses. Preprint at https://arxiv.org/abs/2501.16139 (2025).
Nightingale, J. W. et al. Abell 1201: detection of an ultramassive black hole in a strong gravitational lens. Mon. Not. R. Astron. Soc. 521, 3298–3322 (2023).
Melo-Carneiro, Carlos R. et al. Unveiling a 36 billion solar mass black hole at the centre of the cosmic horseshoe gravitational lens. Preprint at https://arxiv.org/abs/2502.13788 (2025).
Hogg, N. B., Fleury, P., Larena, J. & Martinelli, M. Measuring line-of-sight shear with Einstein rings: a proof of concept. Mon. Not. R. Astron. Soc. 520, 5982–6000 (2023).
Birrer, S., Refregier, A. & Amara, A. Cosmic shear with Einstein rings. Astrophys. J. Lett. 852, L14 (2018).
Etherington, A. et al. Strong gravitational lensing’s ‘external shear’ is not shear. Mon. Not. R. Astron. Soc. 531, 3684–3697 (2024).
Li, T., Collett, T. E., Krawczyk, C. M. & Enzi, W. Cosmology from large populations of galaxy-galaxy strong gravitational lenses. Mon. Not. R. Astron. Soc. 527, 5311–5323 (2024).
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T. & Gavazzi, R. Detection of a dark substructure through gravitational imaging. Mon. Not. R. Astron. Soc. 408, 1969–1981 (2010).
Vegetti, S. et al. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 481, 341–343 (2012).
Hezaveh, Y. D. et al. Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81. Astrophys. J. 823, 37 (2016).
Minor, Q., Gad-Nasr, S., Kaplinghat, M. & Vegetti, S. An unexpected high concentration for the dark substructure in the gravitational lens SDSSJ0946+1006. Mon. Not. R. Astron. Soc. 507, 1662–1683 (2021).
Ballard, D. J., Enzi, W. J. R., Collett, T. E., Turner, H. C. & Smith, R. J. Gravitational imaging through a triple source plane lens: revisiting the ΛCDM-defying dark subhalo in SDSSJ0946+1006. Mon. Not. R. Astron. Soc. 528, 7564–7586 (2024).
Despali, G. et al. Detecting low-mass haloes with strong gravitational lensing. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202451546 (2024).
Enzi, W. J. R., Krawczyk, C. M., Ballard, D. J. & Collett, T. E. The overconcentrated dark halo in the strong lens SDSS J0946+1006 is a subhalo: evidence for self interacting dark matter? Mon. Not. R. Astron. Soc. 540, 247–263 (2025).
Orban de Xivry, G. & Marshall, P. An atlas of predicted exotic gravitational lenses. Mon. Not. R. Astron. Soc. 399, 2–20 (2009).
Treu, T. et al. The SWELLS survey–I. A large spectroscopically selected sample of edge-on late-type lens galaxies. Mon. Not. R. Astron. Soc. 417, 1601–1620 (2011).
Acevedo Barroso, J. A. et al. Searching for strong lensing by late-type galaxies in UNIONS. Preprint at https://arxiv.org/abs/2503.10610 (2025).
Wong, K. C. et al. H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498, 1420–1439 (2020).
Collett, T. E. The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys. Astrophys. J. 811, 20 (2015).
Euclid Collaboration: Mellier, Y. et al. Euclid: I. Overview of the Euclid mission. Astron. Astrophys. 697, A1 (2025).
Euclid Collaboration et al. Euclid Quick Data Release (Q1): the strong lensing discovery engine A: system overview and lens catalogue. Preprint at https://arxiv.org/abs/2503.15324 (2025).
Walsh, D., Carswell, R. F. & Weymann, R. J. 0957+561 A, B: twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979).
Marshall, P. J. et al. SPACE WARPS–I. Crowdsourcing the discovery of gravitational lenses. Mon. Not. R. Astron. Soc. 455, 1171–1190 (2016).
More, A. et al. SPACE WARPS–II. New gravitational lens candidates from the CFHTLS discovered through citizen science. Mon. Not. R. Astron. Soc. 455, 1191–1210 (2016).
Garvin, E. O. et al. Hubble Asteroid Hunter. II. Identifying strong gravitational lenses in HST images with crowdsourcing. Astron. Astrophys. 667, A141 (2022).
Jacobs, C. et al. An extended catalog of galaxy-galaxy strong gravitational lenses discovered in DES using convolutional neural networks. Astrophys. J. Suppl. Ser. 243, 17 (2019).
Rojas, K. et al. Search of strong lens systems in the Dark Energy Survey using convolutional neural networks. Astron. Astrophys. 668, A73 (2022).
Cañameras, R. et al. HOLISMOKES. II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks. Astron. Astrophys. 644, A163 (2020).
Cañameras, R. et al. HOLISMOKES. VI. New galaxy-scale strong lens candidates from the HSC-SSP imaging survey. Astron. Astrophys. 653, L6 (2021).
Storfer, C. et al. New strong gravitational lenses from the DESI Legacy Imaging Surveys Data Release 9. Astrophys. J. Suppl. Ser. 274, 16 (2024).
Gonzalez, J. et al. Discovering strong gravitational lenses in the Dark Energy Survey with interactive machine learning and crowd-sourced inspection with Space Warps. Preprint at https://arxiv.org/abs/2501.15679 (2025).
Jackson, N. Gravitational lenses and lens candidates identified from the COSMOS field. Mon. Not. R. Astron. Soc. 389, 1311–1318 (2008).
Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine C: finding lenses with machine learning. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202554542 (2025).
Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine B: early strong lens candidates from visual inspection of high velocity dispersion galaxies. Preprint at https://arxiv.org/abs/2503.15325 (2025).
Walmsley, M. et al. Zoobot: adaptable deep learning models for galaxy morphology. J. Open Source Softw. 8, 5312 (2023).
Pearce-Casey, R. et al. Euclid: searches for strong gravitational lenses using convolutional neural nets in Early Release Observations of the Perseus field. Astron. Astrophys. 696, A214 (2025).
Nightingale, J. W. et al. ‘PyAutoLens’: Open-source strong gravitational lensing. J. Open Source Softw. 6, 2825 (2021).
Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine D: double-source-plane lens candidates. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202554543 (2025).
O’Riordan, C. M., Despali, G., Vegetti, S., Lovell, M. R. & Moliné, Á. Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid. Mon. Not. R. Astron. Soc. 521, 2342–2356 (2023).
Euclid Collaboration et al. Euclid Quick Data Release (Q1). The strong lensing discovery engine E: ensemble classification of strong gravitational lenses: lessons for Data Release 1. Preprint at https://arxiv.org/abs/2503.15328 (2025).
Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).
Sainz de Murieta, A. et al. Find the haystacks, then look for needles: the rate of strongly lensed supernovae in galaxy-galaxy strong gravitational lenses. Mon. Not. R. Astron. Soc. 535, 2523–2537 (2024).
Shajib, A. J. et al. Strong gravitational lenses from the Vera C. Rubin Observatory. Phil. Trans. R. Soc. A 383, 20240117 (2025).
Nightingale, J. et al. The COSMOS-Web Lens Survey (COWLS) I: discovery of >100 high redshift strong lenses in contiguous JWST imaging. Preprint at https://arxiv.org/abs/2503.08777 (2025).
Mahler, G. et al. The COSMOS-Web Lens Survey (COWLS) II: depth, resolution, and NIR coverage from JWST reveal 17 spectacular lenses. Preprint at https://arxiv.org/abs/2503.08782 (2025).
Faure, C. et al. First catalog of strong lens candidates in the COSMOS field. Astrophys. J. Suppl. Ser. 176, 19–38 (2008).
Gavazzi, R., Marshall, P. J., Treu, T. & Sonnenfeld, A. RINGFINDER: automated detection of galaxy-scale gravitational lenses in ground-based multi-filter imaging data. Astrophys. J. 785, 144 (2014).
Sonnenfeld, A. et al. Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publ. Astron. Soc. Jpn 70, S29 (2018).
Sonnenfeld, A. et al. Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps. Astron. Astrophys. 642, A148 (2020).
Shu, Y. et al. HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program. Astron. Astrophys. 662, A4 (2022).
Wong, K. C. et al. Survey of gravitationally lensed objects in HSC imaging (SuGOHI). VIII. New galaxy-scale lenses from the HSC SSP. Publ. Astron. Soc. Jpn 74, 1209–1219 (2022).
Jaelani, A. T. et al. Survey of gravitationally lensed objects in HSC imaging (SuGOHI): X. Strong lens finding in the HSC-SSP using convolutional neural networks. Mon. Not. R. Astron. Soc. 535, 1625–1639 (2024).
Schuldt, S. et al. HOLISMOKES: XIII. Strong-lens candidates at all mass scales and their environments from the Hyper-Suprime Cam and deep learning. Astron. Astrophys. 693, A291 (2025).
Schuldt, S. et al. HOLISMOKES XVI: lens search in HSC-PDR3 with a neural network committee and post-processing for false-positive removal. Astron. Astrophys. 699, A350 (2025).
Huang, X. et al. Finding strong gravitational lenses in the DESI DECam Legacy Survey. Astrophys. J. 894, 78 (2020).
Huang, X. et al. Discovering new strong gravitational lenses in the DESI Legacy Imaging Surveys. Astrophys. J. 909, 27 (2021).
Savary, E. et al. Strong lensing in UNIONS: toward a pipeline from discovery to modeling. Astron. Astrophys. 666, A1 (2022).
Li, R. et al. High-quality strong lens candidates in the final Kilo-Degree survey footprint. Astrophys. J. 923, 16 (2021).
Acknowledgements
Euclid is an ESA mission with major contributions from the Euclid Consortium, consisting of more than 2,000 scientists, engineers and technicians from 15 European countries, the USA, Canada and Japan.
Author information
Authors and Affiliations
Contributions
N.L. led the structuring of the text, wrote the initial version of the manuscript and produced Figs. 3, 4 and 6. T.L. produced Fig. 1. M.W. produced Fig. 2. J.N. produced Fig. 5. All authors contributed to the research discussed, reviewed the full text and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lines, N.E.P., Li, T., Collett, T.E. et al. The revolution in strong lensing discoveries from Euclid. Nat Astron 9, 1116–1122 (2025). https://doi.org/10.1038/s41550-025-02616-5
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02616-5


