Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A complete measurement of a black-hole recoil through higher-order gravitational-wave modes

Abstract

General relativity predicts that gravitational waves (GWs) carry linear momentum. Consequently, the remnant black hole of a black-hole merger can inherit a recoil velocity or ‘kick’ of crucial implications in, for example, black-hole formation scenarios. While the kick magnitude is determined by the mass ratio and spins of the source, estimating its direction requires a measurement of the two orientation angles of the source. While the orbital inclination angle is commonly reported in GW observations, the scientific potential of the azimuthal one has not been exploited so far. Here we show how the presence of more than one GW emission mode allows one to constrain this angle and, consequently, the kick direction of a real GW event. We analyse the GW190412 signal, which contains higher-order modes, with a numerical relativity surrogate waveform model for black-hole mergers. We rule out kick magnitudes below the typical escape velocity of dense globular clusters vesc ≈ 50 km s−1 with a Bayes factor of ~21 (or ~95% probability). The kick forms angles \({\theta }_{{\mathrm{KL}}}^{-100M}=3{2}_{-14}^{+35}\,\text{deg}\) with the orbital angular momentum defined at a reference time tref = −100 M before merger (with M denoting the system mass in geometric units), \({\theta }_{{{KN}}}=4{4}_{-17}^{+19}\,\text{deg}\) with the line of sight and \({\phi }_{{{KN}}}^{-100M}=6{9}_{-38}^{+33}\,\text{deg}\) with the projection of the latter onto the former, all quoted at a 90% credible level. We anticipate that complete characterization of black-hole recoils will aid in evaluating candidate multi-messenger observations of black-hole mergers in active galactic nuclei, by testing the consistency of observed signals with proposed electromagnetic emission mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of our BH merger reference frame.
Fig. 2: GW190412 as observed on Earth and 180 deg away: impact of HMs.
Fig. 3: Azimuthal angle around GW190412: impact of HMs and precession.
Fig. 4: Magnitude and direction estimates of the GW190412 recoil.

Similar content being viewed by others

Data availability

The GW strain data used in this work and the corresponding noise power spectral densities are publicly available via the Gravitational Wave Open Science Center (GWOSC) Event Page for GW190412 (https://gwosc.org/eventapi/html/O3_Discovery_Papers/GW190412/v2/) and via the data release webpage for GW190412 in LIGO-DCC (https://dcc.ligo.org/LIGO-P190412/public). The parameter inference code Bilby, the waveform model NRSur7dq4 and its remnant model NRSur7dq4Remnant are publicly available. The NR waveforms used in our injection studies are available via the public SXS Waveform Catalog. Codes used to evolve our samples to different reference frequencies can be made available upon request to the corresponding authors.

Code availability

Codes used to evolve our samples to different reference frequencies can be made available upon request to the corresponding authors.

References

  1. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).

  2. Thorne, K. S. Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980).

    ADS  MathSciNet  Google Scholar 

  3. Fitchett, M. J. The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binay system. Mon. Not. R. Astron. Soc. 203, 1049–1062 (1983).

    ADS  Google Scholar 

  4. Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments. Gravitational Waves (OUP Oxford, 2008).

  5. Gonzalez, J. A., Sperhake, U., Bruegmann, B., Hannam, M. & Husa, S. Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007).

    ADS  MathSciNet  Google Scholar 

  6. Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P. & Matzner, R. A. Gravitational recoil from spinning binary black hole mergers. Astrophys. J. 661, 430–436 (2007).

    ADS  Google Scholar 

  7. Koppitz, M. et al. Recoil velocities from equal-mass binary-black-hole mergers. Phys. Rev. Lett. 99, 041102 (2007).

    ADS  Google Scholar 

  8. Sundararajan, P. A., Khanna, G. & Hughes, S. A. Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Phys. Rev. D 81, 104009 (2010).

    ADS  Google Scholar 

  9. Lousto, C. O. & Zlochower, Y. Hangup kicks: still larger recoils by partial spin/orbit alignment of black-hole binaries. Phys. Rev. Lett. 107, 231102 (2011).

    ADS  Google Scholar 

  10. Calderón Bustillo, J., Clark, J. A., Laguna, P. & Shoemaker, D. Tracking black hole kicks from gravitational wave observations. Phys. Rev. Lett. 121, 191102 (2018).

    ADS  Google Scholar 

  11. Campanelli, M., Lousto, C. O., Zlochower, Y. & Merritt, D. Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007).

    ADS  Google Scholar 

  12. Gonzalez, J. A., Hannam, M. D., Sperhake, U., Bruegmann, B. & Husa, S. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Phys. Rev. Lett. 98, 231101 (2007).

    ADS  Google Scholar 

  13. Bruegmann, B., Gonzalez, J. A., Hannam, M., Husa, S. & Sperhake, U. Exploring black hole superkicks. Phys. Rev. D 77, 124047 (2008).

    ADS  Google Scholar 

  14. Healy, J. et al. Superkicks in hyperbolic encounters of binary black holes. Phys. Rev. Lett. 102, 041101 (2009).

    ADS  MathSciNet  Google Scholar 

  15. Sperhake, U., Rosca-Mead, R., Gerosa, D. & Berti, E. Amplification of superkicks in black-hole binaries through orbital eccentricity. Phys. Rev. D 101, 024044 (2020).

    ADS  MathSciNet  Google Scholar 

  16. Lousto, C. O. & Zlochower, Y. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries. Phys. Rev. D 87, 084027 (2013).

    ADS  Google Scholar 

  17. Lousto, C.O., Zlochower, Y., Dotti, M. & Volonteri, M. Gravitational recoil from accretion-aligned black-hole binaries. Phys. Rev. D 85, 084015 (2012).

    ADS  Google Scholar 

  18. Gerosa, D. & Fishbach, M. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures. Nat. Astron. 5, 749–760 (2021).

    ADS  Google Scholar 

  19. Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).

    ADS  Google Scholar 

  20. Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).

    ADS  Google Scholar 

  21. Sakurai, Y., Yoshida, N., Fujii, M. S. & Hirano, S. Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Mon. Not. R. Astron. Soc. 472, 1677–1684 (2017).

    ADS  Google Scholar 

  22. Aasi, J. et al. Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).

    ADS  Google Scholar 

  23. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 32, 024001 (2015).

    ADS  Google Scholar 

  24. Varma, V., Isi, M. & Biscoveanu, S. Extracting the gravitational recoil from black hole merger signals. Phys. Rev. Lett. 124, 101104 (2020).

    ADS  MathSciNet  Google Scholar 

  25. Abbott, R. et al. Properties and astrophysical implications of the 150 M binary black hole merger GW190521. Astrophys. J. Lett. 900, 13 (2020).

    ADS  Google Scholar 

  26. Varma, V. et al. Evidence of large recoil velocity from a black hole merger signal. Phys. Rev. Lett. 128, 191102 (2022).

    ADS  Google Scholar 

  27. Mahapatra, P., Gupta, A., Favata, M., Arun, K. G. & Sathyaprakash, B. S. Remnant black hole kicks and implications for hierarchical mergers. Astrophys. J. Lett. 918, 31 (2021).

    ADS  Google Scholar 

  28. Islam, T. et al. Analysis of GWTC-3 with fully precessing numerical relativity surrogate models. Phys. Rev. D 112, 044001 (2025).

    ADS  MathSciNet  Google Scholar 

  29. Pürrer, M., Hannam, M. & Ohme, F. Can we measure individual black-hole spins from gravitational-wave observations? Phys. Rev. D93, 084042 (2016).

    ADS  Google Scholar 

  30. Biscoveanu, S., Isi, M., Varma, V. & Vitale, S. Measuring the spins of heavy binary black holes. Phys. Rev. D 104, 103018 (2021).

    ADS  Google Scholar 

  31. Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

    Google Scholar 

  32. Nitz, A. H. et al. 1-OGC: the first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data. Astrophys. J. 872, 195 (2019).

    ADS  Google Scholar 

  33. Venumadhav, T., Zackay, B., Roulet, J., Dai, L. & Zaldarriaga, M. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101, 083030 (2020).

    ADS  Google Scholar 

  34. Nitz, A. H. et al. 2-OGC: Open Gravitational-wave Catalog of binary mergers from analysis of public Advanced LIGO and Virgo data. Astrophys. J. 891, 123 (2020).

    ADS  Google Scholar 

  35. Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  36. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2023).

    Google Scholar 

  37. Nitz, A. H. et al. 3-OGC: catalog of gravitational waves from compact-binary mergers. Astrophys. J. 922, 76 (2021).

    ADS  Google Scholar 

  38. Nitz, A. H. et al. 4-OGC: catalog of gravitational waves from compact binary mergers. Astrophys. J. 946, 59 (2023).

    ADS  Google Scholar 

  39. Olsen, S. et al. New binary black hole mergers in the LIGO-Virgo O3a data. Phys. Rev. D 106, 043009 (2022).

    ADS  Google Scholar 

  40. Goldberg, J. N., MacFarlane, A. J., Newman, E. T., Rohrlich, F. & Sudarshan, E. C. G. Spin-s spherical harmonics and ð. J. Math. Phys. 8, 2155 (1967).

    ADS  MathSciNet  Google Scholar 

  41. Blanchet, L. Post-Newtonian theory for gravitational waves. Living Rev. Relativ. 27, 4 (2024).

    ADS  Google Scholar 

  42. Schmidt, P., Harry, I. W. & Pfeiffer, H. P. Numerical relativity injection infrastructure. Preprint at https://doi.org/10.48550/arXiv.1703.01076 (2017).

  43. LIGO Scientific Collaboration LIGO Algorithm Library – LALSuite. GPL https://doi.org/10.7935/GT1W-FZ16 (2018).

  44. Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994).

    ADS  Google Scholar 

  45. Farr, B., Ochsner, E., Farr, W.M. & O'Shaughnessy, R. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves. Phys. Rev. D 90, 024018 (2014).

    ADS  Google Scholar 

  46. Calderón Bustillo, J. et al. Gravitational-wave imaging of black hole horizons: post-merger chirps from binary black holes. Commun. Phys. 3, 176 (2020).

    Google Scholar 

  47. O'Shaughnessy, R., London, L., Healy, J. & Shoemaker, D. Precession during merger: strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger. Phys. Rev. D 87, 044038 (2013).

    ADS  Google Scholar 

  48. Harry, I., Privitera, S., Bohé, A. & Buonanno, A. Searching for gravitational waves from compact binaries with precessing spins. Phys. Rev. D 94, 024012 (2016).

    ADS  Google Scholar 

  49. Harry, I., Calderón Bustillo, J. & Nitz, A. Searching for the full symphony of black hole binary mergers. Phys. Rev. D 97, 023004 (2018).

    ADS  Google Scholar 

  50. Capano, C., Pan, Y. & Buonanno, A. Impact of higher harmonics in searching for gravitational waves from non-spinning binary black holes. Phys. Rev. D 89, 102003 (2014).

    ADS  Google Scholar 

  51. Varma, V. et al. Gravitational-wave observations of binary black holes: effect of nonquadrupole modes. Phys. Rev. D 90, 124004 (2014).

    ADS  Google Scholar 

  52. Calderón Bustillo, J., Laguna, P. & Shoemaker, D. Detectability of gravitational waves from binary black holes: impact of precession and higher modes. Phys. Rev. D 95, 104038 (2017).

    ADS  Google Scholar 

  53. Calderón Bustillo, J., Salemi, F., Dal Canton, T. & Jani, K. P. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Phys. Rev. D 97, 024016 (2018).

    ADS  Google Scholar 

  54. Chandra, K., Gayathri, V., Bustillo, J. C. & Pai, A. Numerical relativity injection analysis of signals from generically spinning intermediate mass black hole binaries in Advanced LIGO data. Phys. Rev. D 102, 044035 (2020).

    ADS  Google Scholar 

  55. Chandra, K., Bustillo, J. C., Pai, A. & Harry, I. W. First gravitational-wave search for intermediate-mass black hole mergers with higher-order harmonics. Phys. Rev. D 106, 123003 (2022).

    ADS  Google Scholar 

  56. Schmidt, S. et al. Searching for gravitational-wave signals from precessing black hole binaries with the GstLAL pipeline. Phys. Rev. D 110, 023038 (2024).

    ADS  Google Scholar 

  57. Schmidt, S. et al. Searching for asymmetric and heavily precessing binary black holes in the gravitational wave data from the LIGO third observing run. Phys. Rev. Lett. 133, 201401 (2024).

    ADS  Google Scholar 

  58. Hannam, M. et al. General-relativistic precession in a black-hole binary. Nature 610, 652–655 (2022).

    ADS  Google Scholar 

  59. Payne, E. et al. Curious case of GW200129: interplay between spin-precession inference and data-quality issues. Phys. Rev. D 106, 104017 (2022).

    ADS  Google Scholar 

  60. Macas, R., Lundgren, A. & Ashton, G. Revisiting the evidence for precession in GW200129 with machine learning noise mitigation. Phys. Rev. D 109, 062006 (2024).

    ADS  Google Scholar 

  61. Abbott, R. et al. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, 44 (2020).

    ADS  Google Scholar 

  62. Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).

    ADS  Google Scholar 

  63. Varma, V. et al. Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D 99, 064045 (2019).

    ADS  MathSciNet  Google Scholar 

  64. Abbott, R. et al. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 (2020).

    ADS  Google Scholar 

  65. Roy, S., Sengupta, A. S. & Arun, K. G. Unveiling the spectrum of inspiralling binary black holes. Phys. Rev. D 103, 064012 (2021).

    ADS  MathSciNet  Google Scholar 

  66. Gerosa, D. & Moore, C. J. Black hole kicks as new gravitational wave observables. Phys. Rev. Lett. 117, 011101 (2016).

    ADS  Google Scholar 

  67. Varma, V., Isi, M., Biscoveanu, S., Farr, W. M. & Vitale, S. Measuring binary black hole orbital-plane spin orientations. Phys. Rev. D 105, 024045 (2022).

    ADS  MathSciNet  Google Scholar 

  68. Holley-Bockelmann, K., Gültekin, K., Shoemaker, D. & Yunes, N. Gravitational wave recoil and the retention of intermediate-mass black holes. Astrophys. J. 686, 829–837 (2008).

    ADS  Google Scholar 

  69. Merritt, D., Milosavljevic, M., Favata, M., Hughes, S. A. & Holz, D. E. Consequences of gravitational radiation recoil. Astrophys. J. 607, 9–12 (2004).

    ADS  Google Scholar 

  70. Antonini, F. & Rasio, F. A. Merging black hole binaries in galactic nuclei: implications for Advanced-LIGO detections. Astrophys. J. 831, 187 (2016).

    ADS  Google Scholar 

  71. Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    ADS  Google Scholar 

  72. Mapelli, M. et al. Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. Mon. Not. R. Astron. Soc. 505, 339–358 (2021).

    ADS  Google Scholar 

  73. Gerosa, D., Vitale, S. & Berti, E. Astrophysical implications of GW190412 as a remnant of a previous black-hole merger. Phys. Rev. Lett. 125, 101103 (2020).

    ADS  Google Scholar 

  74. Araújo-Álvarez, C., Wong, H. W. Y., Liu, A. & Calderón Bustillo, J. Kicking time back in black hole mergers: ancestral masses, spins, birth recoils, and hierarchical-formation viability of GW190521. Astrophys. J. 977, 220 (2024).

    ADS  Google Scholar 

  75. Varma, V., Gerosa, D., Stein, L. C., Hébert, F. & Zhang, H. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Phys. Rev. Lett. 122, 011101 (2019).

    ADS  MathSciNet  Google Scholar 

  76. McKernan, B. et al. Ram-pressure stripping of a kicked hill sphere: prompt electromagnetic emission from the merger of stellar mass black holes in an AGN accretion disk. Astrophys. J. Lett. 884, 50 (2019).

    ADS  Google Scholar 

  77. Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event s190521g. Phys. Rev. Lett. 124, 251102 (2020).

    ADS  Google Scholar 

  78. Graham, M. J. et al. A light in the dark: searching for electromagnetic counterparts to black hole-black hole mergers in LIGO/Virgo O3 with the Zwicky Transient Facility. Astrophys. J. 942, 99 (2023).

    ADS  Google Scholar 

  79. Mukherjee, S. et al. First measurement of the Hubble parameter from bright binary black hole GW190521. Preprint at https://doi.org/10.48550/arXiv.2009.14199 (2020).

  80. Chen, H.-Y., Haster, C.-J., Vitale, S., Farr, W. M. & Isi, M. A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19ABANRHR. Mon. Not. R. Astron. Soc. 513, 2152–2157 (2022).

    ADS  Google Scholar 

  81. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2018).

    ADS  Google Scholar 

  82. Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    ADS  Google Scholar 

  83. Radia, M., Sperhake, U., Berti, E. & Croft, R. Anomalies in the gravitational recoil of eccentric black-hole mergers with unequal mass ratios. Phys. Rev. D 103, 104006 (2021).

    ADS  MathSciNet  Google Scholar 

  84. Healy, J., Lousto, C. O. & Zlochower, Y. Remnant mass, spin, and recoil from spin aligned black-hole binaries. Phys. Rev. D 90, 104004 (2014).

    ADS  Google Scholar 

  85. Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 241, 27 (2019).

    ADS  Google Scholar 

  86. Smith, R. J. E., Ashton, G., Vajpeyi, A. & Talbot, C. Massively parallel Bayesian inference for transient gravitational-wave astronomy. Mon. Not. R. Astron. Soc. 498, 4492–4502 (2020).

    ADS  Google Scholar 

  87. Khan, S., Ohme, F., Chatziioannou, K. & Hannam, M. Including higher order multipoles in gravitational-wave models for precessing binary black holes. Phys. Rev. D 101, 024056 (2020).

    ADS  MathSciNet  Google Scholar 

  88. Ossokine, S. et al. Multipolar effective-one-body waveforms for precessing binary black holes: construction and validation. Phys. Rev. D 102, 044055 (2020).

    ADS  MathSciNet  Google Scholar 

  89. Pan, Y. et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 89, 084006 (2014).

    ADS  Google Scholar 

  90. Babak, S., Taracchini, A. & Buonanno, A. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D 95, 024010 (2017).

    ADS  Google Scholar 

  91. Schmidt, P., Hannam, M. & Husa, S. Towards models of gravitational waveforms from generic binaries: a simple approximate mapping between precessing and non-precessing inspiral signals. Phys. Rev. D 86, 104063 (2012).

    ADS  Google Scholar 

  92. Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).

    ADS  Google Scholar 

  93. Ruiz, M., Takahashi, R., Alcubierre, M. & Nunez, D. Multipole expansions for energy and momenta carried by gravitational waves. Gen. Rel. Grav. 40, 2467 (2008).

    ADS  Google Scholar 

  94. Buonanno, A., Chen, Y. & Vallisneri, M. Detecting gravitational waves from precessing binaries of spinning compact objects: adiabatic limit. Phys. Rev. D 67, 10402 (2003).

    Google Scholar 

  95. Borchers, A. & Ohme, F. Inconsistent black hole kick estimates from gravitational-wave models. Class. Quantum Gravity 40, 095008 (2023).

    ADS  MathSciNet  Google Scholar 

  96. Islam, T., Field, S. E., Haster, C.-J. & Smith, R. Improved analysis of GW190412 with a precessing numerical relativity surrogate waveform model. Phys. Rev. D 103, 104027 (2021).

    ADS  MathSciNet  Google Scholar 

  97. Pratten, G. et al. Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. Phys. Rev. D 103, 104056 (2021).

    ADS  MathSciNet  Google Scholar 

  98. Abbott, B. P. et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016).

    ADS  MathSciNet  Google Scholar 

  99. Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS  Google Scholar 

  100. Vitale, S. et al. Effect of calibration errors on bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys. Rev. D 85, 064034 (2012).

    ADS  Google Scholar 

  101. Payne, E., Talbot, C., Lasky, P. D., Thrane, E. & Kissel, J. S. Gravitational-wave astronomy with a physical calibration model. Phys. Rev. D 102, 122004 (2020).

    ADS  Google Scholar 

  102. Huang, Y. et al. Impact of calibration uncertainties on Hubble constant measurements from gravitational-wave sources. Phys. Rev. D 111, 063034 (2025).

    ADS  Google Scholar 

  103. Ajith, P. Addressing the spin question in gravitational-wave searches: waveform templates for inspiralling compact binaries with nonprecessing spins. Phys. Rev. D 84, 084037 (2011).

    ADS  Google Scholar 

  104. Sturani, R. Note on the derivation of the angular momentum and spin precessing equations in SpinTaylor codes. LIGO Document Control Center Portal https://dcc.ligo.org/LIGO-T1500554-v23/public (2021).

  105. Hoy, C. & Raymond, V. PESummary: the code agnostic Parameter Estimation Summary page builder. SoftwareX 15, 100765 (2021).

    Google Scholar 

  106. Bohé, A., Marsat, S., Faye, G. & Blanchet, L. Next-to-next-to-leading order spin–orbit effects in the near-zone metric and precession equations of compact binaries. Class. Quantum Gravity 30, 075017 (2013).

    ADS  Google Scholar 

  107. Dickey, J. M. The weighted likelihood ratio, linear hypotheses on normal location parameters. Ann. Math. Stat. 42, 204–223 (1971).

    MathSciNet  Google Scholar 

  108. Calderón Bustillo, J., Rio, A., Sanchis-Gual, N., Chandra, K. & Leong, S. H. W. Testing mirror symmetry in the universe with ligo-virgo black-hole mergers. Phys. Rev. Lett. 134, 031402 (2025).

    ADS  MathSciNet  Google Scholar 

  109. Abbott, R. et al. Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO. Astrophys. J. Suppl. Ser. 267, 29 (2023).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Sanchis-Gual, B. McKernan and S. Ford for their comments on the manuscript. We thank S. Ossokine and N. Johnson-McDaniel for their advice to perform parameter estimation at a given reference time tref and V. Varma for discussions on the importance of this choice. We also thank A. Borchers for useful discussions regarding the accuracy of kick estimations of various waveform models. Finally, we thank T. Dent, T. Li and T. Mömbacher for useful discussions. The analysed data and the corresponding power spectral densities are publicly available at the online Gravitational Wave Open Science Center109. J.C.B. is supported by a fellowship from ‘la Caixa’ Foundation (ID100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 847648. The fellowship code is LCF/BQ/PI20/11760016. J.C.B. is also supported by the research grant PID2020-118635GB-I00 and by a Ramón y Cajal Fellowship RYC2022-036203-I from the Spain-Ministerio de Ciencia e Innovación. K.C. acknowledges the generous support provided through NSF grant numbers PHY-2207638, AST-2307147, PHY-2308886 and PHY-2309064. We acknowledge using the IUCAA LDG cluster Sarathi for the computational and numerical work. We acknowledge computational resources provided by the CIT cluster of the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY0823459, and the support of the NSF CIT cluster for the provision of computational resources for our parameter inference runs. This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. We acknowledge the use of computing facilities supported by grants from the Croucher Innovation Award from the Croucher Foundation Hong Kong. This research has made use of data or software obtained from the Gravitational Wave Open Science Center (gwosc.org), a service of the LIGO Scientific Collaboration, the Virgo Collaboration, and KAGRA. This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation, as well as the Science and Technology Facilities Council (STFC) of the UK, the Max-Planck-Society (MPS) and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal and Spain. KAGRA is supported by Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) in Japan; National Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea; Academia Sinica (AS) and National Science and Technology Council (NSTC) in Taiwan. This Article has LIGO DCC number P2200332.

Author information

Authors and Affiliations

Authors

Contributions

J.C.B. designed and led the study, designed the analyses and the statistical framework and wrote the manuscript. S.H.W.L. developed tools to extract kick estimates, evolve parameter inference samples and run the injection campaign presented in the Supplementary Information. K.C. performed parameter inference runs on GW190412.

Corresponding authors

Correspondence to Juan Calderón Bustillo, Samson H. W. Leong or Koustav Chandra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Gregorio Carullo, Isobel Romero-Shaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón Bustillo, J., Leong, S.H.W. & Chandra, K. A complete measurement of a black-hole recoil through higher-order gravitational-wave modes. Nat Astron 9, 1530–1540 (2025). https://doi.org/10.1038/s41550-025-02632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02632-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing