Abstract
General relativity predicts that gravitational waves (GWs) carry linear momentum. Consequently, the remnant black hole of a black-hole merger can inherit a recoil velocity or ‘kick’ of crucial implications in, for example, black-hole formation scenarios. While the kick magnitude is determined by the mass ratio and spins of the source, estimating its direction requires a measurement of the two orientation angles of the source. While the orbital inclination angle is commonly reported in GW observations, the scientific potential of the azimuthal one has not been exploited so far. Here we show how the presence of more than one GW emission mode allows one to constrain this angle and, consequently, the kick direction of a real GW event. We analyse the GW190412 signal, which contains higher-order modes, with a numerical relativity surrogate waveform model for black-hole mergers. We rule out kick magnitudes below the typical escape velocity of dense globular clusters vesc ≈ 50 km s−1 with a Bayes factor of ~21 (or ~95% probability). The kick forms angles \({\theta }_{{\mathrm{KL}}}^{-100M}=3{2}_{-14}^{+35}\,\text{deg}\) with the orbital angular momentum defined at a reference time tref = −100 M before merger (with M denoting the system mass in geometric units), \({\theta }_{{{KN}}}=4{4}_{-17}^{+19}\,\text{deg}\) with the line of sight and \({\phi }_{{{KN}}}^{-100M}=6{9}_{-38}^{+33}\,\text{deg}\) with the projection of the latter onto the former, all quoted at a 90% credible level. We anticipate that complete characterization of black-hole recoils will aid in evaluating candidate multi-messenger observations of black-hole mergers in active galactic nuclei, by testing the consistency of observed signals with proposed electromagnetic emission mechanisms.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The GW strain data used in this work and the corresponding noise power spectral densities are publicly available via the Gravitational Wave Open Science Center (GWOSC) Event Page for GW190412 (https://gwosc.org/eventapi/html/O3_Discovery_Papers/GW190412/v2/) and via the data release webpage for GW190412 in LIGO-DCC (https://dcc.ligo.org/LIGO-P190412/public). The parameter inference code Bilby, the waveform model NRSur7dq4 and its remnant model NRSur7dq4Remnant are publicly available. The NR waveforms used in our injection studies are available via the public SXS Waveform Catalog. Codes used to evolve our samples to different reference frequencies can be made available upon request to the corresponding authors.
Code availability
Codes used to evolve our samples to different reference frequencies can be made available upon request to the corresponding authors.
References
Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).
Thorne, K. S. Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980).
Fitchett, M. J. The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binay system. Mon. Not. R. Astron. Soc. 203, 1049–1062 (1983).
Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments. Gravitational Waves (OUP Oxford, 2008).
Gonzalez, J. A., Sperhake, U., Bruegmann, B., Hannam, M. & Husa, S. Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007).
Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P. & Matzner, R. A. Gravitational recoil from spinning binary black hole mergers. Astrophys. J. 661, 430–436 (2007).
Koppitz, M. et al. Recoil velocities from equal-mass binary-black-hole mergers. Phys. Rev. Lett. 99, 041102 (2007).
Sundararajan, P. A., Khanna, G. & Hughes, S. A. Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Phys. Rev. D 81, 104009 (2010).
Lousto, C. O. & Zlochower, Y. Hangup kicks: still larger recoils by partial spin/orbit alignment of black-hole binaries. Phys. Rev. Lett. 107, 231102 (2011).
Calderón Bustillo, J., Clark, J. A., Laguna, P. & Shoemaker, D. Tracking black hole kicks from gravitational wave observations. Phys. Rev. Lett. 121, 191102 (2018).
Campanelli, M., Lousto, C. O., Zlochower, Y. & Merritt, D. Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007).
Gonzalez, J. A., Hannam, M. D., Sperhake, U., Bruegmann, B. & Husa, S. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Phys. Rev. Lett. 98, 231101 (2007).
Bruegmann, B., Gonzalez, J. A., Hannam, M., Husa, S. & Sperhake, U. Exploring black hole superkicks. Phys. Rev. D 77, 124047 (2008).
Healy, J. et al. Superkicks in hyperbolic encounters of binary black holes. Phys. Rev. Lett. 102, 041101 (2009).
Sperhake, U., Rosca-Mead, R., Gerosa, D. & Berti, E. Amplification of superkicks in black-hole binaries through orbital eccentricity. Phys. Rev. D 101, 024044 (2020).
Lousto, C. O. & Zlochower, Y. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries. Phys. Rev. D 87, 084027 (2013).
Lousto, C.O., Zlochower, Y., Dotti, M. & Volonteri, M. Gravitational recoil from accretion-aligned black-hole binaries. Phys. Rev. D 85, 084015 (2012).
Gerosa, D. & Fishbach, M. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures. Nat. Astron. 5, 749–760 (2021).
Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).
Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).
Sakurai, Y., Yoshida, N., Fujii, M. S. & Hirano, S. Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Mon. Not. R. Astron. Soc. 472, 1677–1684 (2017).
Aasi, J. et al. Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).
Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 32, 024001 (2015).
Varma, V., Isi, M. & Biscoveanu, S. Extracting the gravitational recoil from black hole merger signals. Phys. Rev. Lett. 124, 101104 (2020).
Abbott, R. et al. Properties and astrophysical implications of the 150 M⊙ binary black hole merger GW190521. Astrophys. J. Lett. 900, 13 (2020).
Varma, V. et al. Evidence of large recoil velocity from a black hole merger signal. Phys. Rev. Lett. 128, 191102 (2022).
Mahapatra, P., Gupta, A., Favata, M., Arun, K. G. & Sathyaprakash, B. S. Remnant black hole kicks and implications for hierarchical mergers. Astrophys. J. Lett. 918, 31 (2021).
Islam, T. et al. Analysis of GWTC-3 with fully precessing numerical relativity surrogate models. Phys. Rev. D 112, 044001 (2025).
Pürrer, M., Hannam, M. & Ohme, F. Can we measure individual black-hole spins from gravitational-wave observations? Phys. Rev. D93, 084042 (2016).
Biscoveanu, S., Isi, M., Varma, V. & Vitale, S. Measuring the spins of heavy binary black holes. Phys. Rev. D 104, 103018 (2021).
Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).
Nitz, A. H. et al. 1-OGC: the first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data. Astrophys. J. 872, 195 (2019).
Venumadhav, T., Zackay, B., Roulet, J., Dai, L. & Zaldarriaga, M. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101, 083030 (2020).
Nitz, A. H. et al. 2-OGC: Open Gravitational-wave Catalog of binary mergers from analysis of public Advanced LIGO and Virgo data. Astrophys. J. 891, 123 (2020).
Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).
Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2023).
Nitz, A. H. et al. 3-OGC: catalog of gravitational waves from compact-binary mergers. Astrophys. J. 922, 76 (2021).
Nitz, A. H. et al. 4-OGC: catalog of gravitational waves from compact binary mergers. Astrophys. J. 946, 59 (2023).
Olsen, S. et al. New binary black hole mergers in the LIGO-Virgo O3a data. Phys. Rev. D 106, 043009 (2022).
Goldberg, J. N., MacFarlane, A. J., Newman, E. T., Rohrlich, F. & Sudarshan, E. C. G. Spin-s spherical harmonics and ð. J. Math. Phys. 8, 2155 (1967).
Blanchet, L. Post-Newtonian theory for gravitational waves. Living Rev. Relativ. 27, 4 (2024).
Schmidt, P., Harry, I. W. & Pfeiffer, H. P. Numerical relativity injection infrastructure. Preprint at https://doi.org/10.48550/arXiv.1703.01076 (2017).
LIGO Scientific Collaboration LIGO Algorithm Library – LALSuite. GPL https://doi.org/10.7935/GT1W-FZ16 (2018).
Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994).
Farr, B., Ochsner, E., Farr, W.M. & O'Shaughnessy, R. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves. Phys. Rev. D 90, 024018 (2014).
Calderón Bustillo, J. et al. Gravitational-wave imaging of black hole horizons: post-merger chirps from binary black holes. Commun. Phys. 3, 176 (2020).
O'Shaughnessy, R., London, L., Healy, J. & Shoemaker, D. Precession during merger: strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger. Phys. Rev. D 87, 044038 (2013).
Harry, I., Privitera, S., Bohé, A. & Buonanno, A. Searching for gravitational waves from compact binaries with precessing spins. Phys. Rev. D 94, 024012 (2016).
Harry, I., Calderón Bustillo, J. & Nitz, A. Searching for the full symphony of black hole binary mergers. Phys. Rev. D 97, 023004 (2018).
Capano, C., Pan, Y. & Buonanno, A. Impact of higher harmonics in searching for gravitational waves from non-spinning binary black holes. Phys. Rev. D 89, 102003 (2014).
Varma, V. et al. Gravitational-wave observations of binary black holes: effect of nonquadrupole modes. Phys. Rev. D 90, 124004 (2014).
Calderón Bustillo, J., Laguna, P. & Shoemaker, D. Detectability of gravitational waves from binary black holes: impact of precession and higher modes. Phys. Rev. D 95, 104038 (2017).
Calderón Bustillo, J., Salemi, F., Dal Canton, T. & Jani, K. P. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Phys. Rev. D 97, 024016 (2018).
Chandra, K., Gayathri, V., Bustillo, J. C. & Pai, A. Numerical relativity injection analysis of signals from generically spinning intermediate mass black hole binaries in Advanced LIGO data. Phys. Rev. D 102, 044035 (2020).
Chandra, K., Bustillo, J. C., Pai, A. & Harry, I. W. First gravitational-wave search for intermediate-mass black hole mergers with higher-order harmonics. Phys. Rev. D 106, 123003 (2022).
Schmidt, S. et al. Searching for gravitational-wave signals from precessing black hole binaries with the GstLAL pipeline. Phys. Rev. D 110, 023038 (2024).
Schmidt, S. et al. Searching for asymmetric and heavily precessing binary black holes in the gravitational wave data from the LIGO third observing run. Phys. Rev. Lett. 133, 201401 (2024).
Hannam, M. et al. General-relativistic precession in a black-hole binary. Nature 610, 652–655 (2022).
Payne, E. et al. Curious case of GW200129: interplay between spin-precession inference and data-quality issues. Phys. Rev. D 106, 104017 (2022).
Macas, R., Lundgren, A. & Ashton, G. Revisiting the evidence for precession in GW200129 with machine learning noise mitigation. Phys. Rev. D 109, 062006 (2024).
Abbott, R. et al. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, 44 (2020).
Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).
Varma, V. et al. Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D 99, 064045 (2019).
Abbott, R. et al. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 (2020).
Roy, S., Sengupta, A. S. & Arun, K. G. Unveiling the spectrum of inspiralling binary black holes. Phys. Rev. D 103, 064012 (2021).
Gerosa, D. & Moore, C. J. Black hole kicks as new gravitational wave observables. Phys. Rev. Lett. 117, 011101 (2016).
Varma, V., Isi, M., Biscoveanu, S., Farr, W. M. & Vitale, S. Measuring binary black hole orbital-plane spin orientations. Phys. Rev. D 105, 024045 (2022).
Holley-Bockelmann, K., Gültekin, K., Shoemaker, D. & Yunes, N. Gravitational wave recoil and the retention of intermediate-mass black holes. Astrophys. J. 686, 829–837 (2008).
Merritt, D., Milosavljevic, M., Favata, M., Hughes, S. A. & Holz, D. E. Consequences of gravitational radiation recoil. Astrophys. J. 607, 9–12 (2004).
Antonini, F. & Rasio, F. A. Merging black hole binaries in galactic nuclei: implications for Advanced-LIGO detections. Astrophys. J. 831, 187 (2016).
Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).
Mapelli, M. et al. Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. Mon. Not. R. Astron. Soc. 505, 339–358 (2021).
Gerosa, D., Vitale, S. & Berti, E. Astrophysical implications of GW190412 as a remnant of a previous black-hole merger. Phys. Rev. Lett. 125, 101103 (2020).
Araújo-Álvarez, C., Wong, H. W. Y., Liu, A. & Calderón Bustillo, J. Kicking time back in black hole mergers: ancestral masses, spins, birth recoils, and hierarchical-formation viability of GW190521. Astrophys. J. 977, 220 (2024).
Varma, V., Gerosa, D., Stein, L. C., Hébert, F. & Zhang, H. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Phys. Rev. Lett. 122, 011101 (2019).
McKernan, B. et al. Ram-pressure stripping of a kicked hill sphere: prompt electromagnetic emission from the merger of stellar mass black holes in an AGN accretion disk. Astrophys. J. Lett. 884, 50 (2019).
Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event s190521g. Phys. Rev. Lett. 124, 251102 (2020).
Graham, M. J. et al. A light in the dark: searching for electromagnetic counterparts to black hole-black hole mergers in LIGO/Virgo O3 with the Zwicky Transient Facility. Astrophys. J. 942, 99 (2023).
Mukherjee, S. et al. First measurement of the Hubble parameter from bright binary black hole GW190521. Preprint at https://doi.org/10.48550/arXiv.2009.14199 (2020).
Chen, H.-Y., Haster, C.-J., Vitale, S., Farr, W. M. & Isi, M. A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19ABANRHR. Mon. Not. R. Astron. Soc. 513, 2152–2157 (2022).
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2018).
Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Radia, M., Sperhake, U., Berti, E. & Croft, R. Anomalies in the gravitational recoil of eccentric black-hole mergers with unequal mass ratios. Phys. Rev. D 103, 104006 (2021).
Healy, J., Lousto, C. O. & Zlochower, Y. Remnant mass, spin, and recoil from spin aligned black-hole binaries. Phys. Rev. D 90, 104004 (2014).
Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 241, 27 (2019).
Smith, R. J. E., Ashton, G., Vajpeyi, A. & Talbot, C. Massively parallel Bayesian inference for transient gravitational-wave astronomy. Mon. Not. R. Astron. Soc. 498, 4492–4502 (2020).
Khan, S., Ohme, F., Chatziioannou, K. & Hannam, M. Including higher order multipoles in gravitational-wave models for precessing binary black holes. Phys. Rev. D 101, 024056 (2020).
Ossokine, S. et al. Multipolar effective-one-body waveforms for precessing binary black holes: construction and validation. Phys. Rev. D 102, 044055 (2020).
Pan, Y. et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 89, 084006 (2014).
Babak, S., Taracchini, A. & Buonanno, A. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D 95, 024010 (2017).
Schmidt, P., Hannam, M. & Husa, S. Towards models of gravitational waveforms from generic binaries: a simple approximate mapping between precessing and non-precessing inspiral signals. Phys. Rev. D 86, 104063 (2012).
Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).
Ruiz, M., Takahashi, R., Alcubierre, M. & Nunez, D. Multipole expansions for energy and momenta carried by gravitational waves. Gen. Rel. Grav. 40, 2467 (2008).
Buonanno, A., Chen, Y. & Vallisneri, M. Detecting gravitational waves from precessing binaries of spinning compact objects: adiabatic limit. Phys. Rev. D 67, 10402 (2003).
Borchers, A. & Ohme, F. Inconsistent black hole kick estimates from gravitational-wave models. Class. Quantum Gravity 40, 095008 (2023).
Islam, T., Field, S. E., Haster, C.-J. & Smith, R. Improved analysis of GW190412 with a precessing numerical relativity surrogate waveform model. Phys. Rev. D 103, 104027 (2021).
Pratten, G. et al. Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. Phys. Rev. D 103, 104056 (2021).
Abbott, B. P. et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016).
Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Vitale, S. et al. Effect of calibration errors on bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys. Rev. D 85, 064034 (2012).
Payne, E., Talbot, C., Lasky, P. D., Thrane, E. & Kissel, J. S. Gravitational-wave astronomy with a physical calibration model. Phys. Rev. D 102, 122004 (2020).
Huang, Y. et al. Impact of calibration uncertainties on Hubble constant measurements from gravitational-wave sources. Phys. Rev. D 111, 063034 (2025).
Ajith, P. Addressing the spin question in gravitational-wave searches: waveform templates for inspiralling compact binaries with nonprecessing spins. Phys. Rev. D 84, 084037 (2011).
Sturani, R. Note on the derivation of the angular momentum and spin precessing equations in SpinTaylor codes. LIGO Document Control Center Portal https://dcc.ligo.org/LIGO-T1500554-v23/public (2021).
Hoy, C. & Raymond, V. PESummary: the code agnostic Parameter Estimation Summary page builder. SoftwareX 15, 100765 (2021).
Bohé, A., Marsat, S., Faye, G. & Blanchet, L. Next-to-next-to-leading order spin–orbit effects in the near-zone metric and precession equations of compact binaries. Class. Quantum Gravity 30, 075017 (2013).
Dickey, J. M. The weighted likelihood ratio, linear hypotheses on normal location parameters. Ann. Math. Stat. 42, 204–223 (1971).
Calderón Bustillo, J., Rio, A., Sanchis-Gual, N., Chandra, K. & Leong, S. H. W. Testing mirror symmetry in the universe with ligo-virgo black-hole mergers. Phys. Rev. Lett. 134, 031402 (2025).
Abbott, R. et al. Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO. Astrophys. J. Suppl. Ser. 267, 29 (2023).
Acknowledgements
We thank N. Sanchis-Gual, B. McKernan and S. Ford for their comments on the manuscript. We thank S. Ossokine and N. Johnson-McDaniel for their advice to perform parameter estimation at a given reference time tref and V. Varma for discussions on the importance of this choice. We also thank A. Borchers for useful discussions regarding the accuracy of kick estimations of various waveform models. Finally, we thank T. Dent, T. Li and T. Mömbacher for useful discussions. The analysed data and the corresponding power spectral densities are publicly available at the online Gravitational Wave Open Science Center109. J.C.B. is supported by a fellowship from ‘la Caixa’ Foundation (ID100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 847648. The fellowship code is LCF/BQ/PI20/11760016. J.C.B. is also supported by the research grant PID2020-118635GB-I00 and by a Ramón y Cajal Fellowship RYC2022-036203-I from the Spain-Ministerio de Ciencia e Innovación. K.C. acknowledges the generous support provided through NSF grant numbers PHY-2207638, AST-2307147, PHY-2308886 and PHY-2309064. We acknowledge using the IUCAA LDG cluster Sarathi for the computational and numerical work. We acknowledge computational resources provided by the CIT cluster of the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY0823459, and the support of the NSF CIT cluster for the provision of computational resources for our parameter inference runs. This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. We acknowledge the use of computing facilities supported by grants from the Croucher Innovation Award from the Croucher Foundation Hong Kong. This research has made use of data or software obtained from the Gravitational Wave Open Science Center (gwosc.org), a service of the LIGO Scientific Collaboration, the Virgo Collaboration, and KAGRA. This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation, as well as the Science and Technology Facilities Council (STFC) of the UK, the Max-Planck-Society (MPS) and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal and Spain. KAGRA is supported by Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) in Japan; National Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea; Academia Sinica (AS) and National Science and Technology Council (NSTC) in Taiwan. This Article has LIGO DCC number P2200332.
Author information
Authors and Affiliations
Contributions
J.C.B. designed and led the study, designed the analyses and the statistical framework and wrote the manuscript. S.H.W.L. developed tools to extract kick estimates, evolve parameter inference samples and run the injection campaign presented in the Supplementary Information. K.C. performed parameter inference runs on GW190412.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Gregorio Carullo, Isobel Romero-Shaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4 and Tables 1 and 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Calderón Bustillo, J., Leong, S.H.W. & Chandra, K. A complete measurement of a black-hole recoil through higher-order gravitational-wave modes. Nat Astron 9, 1530–1540 (2025). https://doi.org/10.1038/s41550-025-02632-5
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02632-5


