Abstract
The discovery of wide-orbit giant exoplanets has posed a challenge to our conventional understanding of planet formation through the coagulation of dust grains and planetesimals and the subsequent accretion of protoplanetary disk gas. As an alternative mechanism, the direct in situ formation of planets or planetary cores by gravitational instability (GI) in protoplanetary disks has been proposed. However, observational evidence for GI in regions where wide-orbit planets form is still lacking. Theoretical studies predict that GI induces spiral arms moving at the local Keplerian speed in a disk. Based on several high-angular-resolution observations over a 7-year time baseline using the Atacama Large Millimeter/submillimeter Array, here we report the evidence for spiral arms following the Keplerian rotation in the dust continuum disk around the young star IM Lup. This demonstrates that GI can operate in wide-orbit planet-forming regions, establishing it as a plausible formation mechanism for such planets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data used for this study are available via the ALMA science archive (https://almascience.nao.ac.jp/aq/). The project IDs are 2016.1.00484.L, 2013.1.00226.S, 2013.1.00694.S, 2013.1.00798.S, 2018.1.01055.L and 2023.1.00525.S.
Code availability
The codes used for the analysis are available from the corresponding author upon reasonable request.
References
Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989 (2013).
Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008).
Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).
Armitage, P. J. Astrophysics of Planet Formation (Cambridge Univ. Press, 2020).
Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).
Rodet, L. et al. Origin of the wide-orbit circumbinary giant planet HD 106906. A dynamical scenario and its impact on the disk. Astron. Astrophys. 602, A12 (2017).
Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J. & Bonnell, I. A. Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355, 543–552 (2004).
Boley, A. C. & Durisen, R. H. On the possibility of enrichment and differentiation in gas giants during birth by disk instability. Astrophys. J. 724, 618–639 (2010).
Baehr, H., Zhu, Z. & Yang, C.-C. Direct formation of planetary embryos in self-gravitating disks. Astrophys. J. 933, 100 (2022).
Baehr, H. Filling in the gaps: can gravitationally unstable discs form the seeds of gas giant planets? Mon. Not. R. Astron. Soc. 523, 3348–3362 (2023).
Longarini, C., Lodato, G., Bertin, G. & Armitage, P. J. The role of the drag force in the gravitational stability of dusty planet forming disc. I. Analytical theory. Mon. Not. R. Astron. Soc. 519, 2017–2029 (2023).
Longarini, C., Armitage, P. J., Lodato, G., Price, D. J. & Ceppi, S. The role of the drag force in the gravitational stability of dusty planet-forming disc. II. Numerical simulations. Mon. Not. R. Astron. Soc. 522, 6217–6235 (2023).
Rowther, S. et al. The role of drag and gravity on dust concentration in a gravitationally unstable disc. Mon. Not. R. Astron. Soc. 528, 2490–2500 (2024).
Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).
Dong, R., Zhu, Z., Rafikov, R. R. & Stone, J. M. Observational signatures of planets in protoplanetary disks: spiral arms observed in scattered light imaging can be induced by planets. Astrophys. J. Lett. 809, L5 (2015).
Muto, T. et al. Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. Astrophys. J. Lett. 748, L22 (2012).
Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. Lett. 869, L43 (2018).
Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018).
Cuello, N. et al. Flybys in protoplanetary discs. I. Gas and dust dynamics. Mon. Not. R. Astron. Soc. 483, 4114–4139 (2019).
Montesinos, M. et al. Spiral waves triggered by shadows in transition disks. Astrophys. J. Lett. 823, L8 (2016).
Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).
Dong, R., Fung, J. & Chiang, E. How spirals and gaps driven by companions in protoplanetary disks appear in scattered light at arbitrary viewing angles. Astrophys. J. 826, 75 (2016).
Ren, B. et al. Dynamical evidence of a spiral arm-driving planet in the MWC 758 protoplanetary disk. Astrophys. J. Lett. 898, L38 (2020).
Xie, C. et al. Dynamical detection of a companion driving a spiral arm in a protoplanetary disk. Astron. Astrophys. 675, L1 (2023).
Ren, B. B. et al. A companion in V1247 Ori supported by motion in the pattern of the spiral arm. Astron. Astrophys. 681, L2 (2024).
Hall, C. et al. Predicting the kinematic evidence of gravitational instability. Astrophys. J. 904, 148 (2020).
Speedie, J. et al. Gravitational instability in a planet-forming disk. Nature 633, 58–62 (2024).
Teague, R. et al. Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic substructures in the disks of HD 163296 and MWC 480. Astrophys. J. Suppl. Ser. 257, 18 (2021).
Gaia Collaborationet al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).
Andrews, S. M. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869, L41 (2018).
Avenhaus, H. et al. Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS polarimetric imaging of eight prominent T Tauri disks. Astrophys. J. 863, 44 (2018).
Öberg, K. I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). I. Program overview and highlights. Astrophys. J. Suppl. Ser. 257, 1 (2021).
Lodato, G. et al. Dynamical mass measurements of two protoplanetary discs. Mon. Not. R. Astron. Soc. 518, 4481–4493 (2023).
Paneque-Carreño, T. et al. High turbulence in the IM Lup protoplanetary disk. Direct observational constraints from CN and C2H emission. Astron. Astrophys. 684, A174 (2024).
Bosman, A. D., Appelgren, J., Bergin, E. A., Lambrechts, M. & Johansen, A. A potential site for wide-orbit giant planet formation in the IM Lup disk. Astrophys. J. Lett. 944, L53 (2023).
Ueda, T., Tazaki, R., Okuzumi, S., Flock, M. & Sudarshan, P. Support for fragile porous dust in a gravitationally self-regulated disk around IM Lup. Nat. Astron. 8, 1148–1158 (2024).
Pinte, C. et al. Nine localized deviations from Keplerian rotation in the DSHARP circumstellar disks: kinematic evidence for protoplanets carving the gaps. Astrophys. J. Lett. 890, L9 (2020).
Verrios, H. J., Price, D. J., Pinte, C., Hilder, T. & Calcino, J. Kinematic evidence for an embedded planet in the IM Lupi disk. Astrophys. J. Lett. 934, L11 (2022).
Winter, A. J., Benisty, M. & Andrews, S. M. Planet formation regulated by Galactic-scale interstellar turbulence. Astrophys. J. Lett. 972, L9 (2024).
Winter, A. J., Benisty, M., Manara, C. F. & Gupta, A. Spatially correlated stellar accretion in the Lupus star forming region: evidence for ongoing infall from the interstellar medium. Astron. Astrophys. 691, A169 (2024).
Harsono, D., Alexander, R. D. & Levin, Y. Global gravitational instabilities in discs with infall. Mon. Not. R. Astron. Soc. 413, 423–433 (2011).
Tsukamoto, Y. & Machida, M. N. Classification of the circumstellar disc evolution during the main accretion phase. Mon. Not. R. Astron. Soc. 416, 591–600 (2011).
Tsukamoto, Y., Takahashi, S. Z., Machida, M. N. & Inutsuka, S. Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Mon. Not. R. Astron. Soc. 446, 1175–1190 (2015).
Tomida, K., Machida, M. N., Hosokawa, T., Sakurai, Y. & Lin, C. H. Grand-design spiral arms in a young forming circumstellar disk. Astrophys. J. Lett. 835, L11 (2017).
Speedie, J. et al. Mapping the merging zone of late infall in the AB Aur planet-forming system. Astrophys. J. Lett. 981, L30 (2025).
Kratter, K. M., Murray-Clay, R. A. & Youdin, A. N. The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. Astrophys. J. 710, 1375–1386 (2010).
Teague, R. et al. Gas and dust shadows in the TW Hydrae disk. Astrophys. J. 930, 144 (2022).
Debes, J. et al. The surprising evolution of the shadow on the TW Hya disk. Astrophys. J. 948, 36 (2023).
Kuo, I. H. G., Yen, H.-W. & Gu, P.-G. ALMA observations of proper motions of the dust clumps in the protoplanetary disk MWC 758. Astrophys. J. Lett. 975, L33 (2024).
Cortes, P. et al. ALMA Cycle 10 Technical Handbook. Zenodo https://doi.org/10.5281/zenodo.7822943 (2023).
CASA Teamet al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).
Sierra, A. et al. Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing disk substructures in multiwavelength continuum emission. Astrophys. J. Suppl. Ser. 257, 14 (2021).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Dipierro, G., Lodato, G., Testi, L. & de Gregorio Monsalvo, I. How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014).
Béthune, W., Latter, H. & Kley, W. Spiral structures in gravito-turbulent gaseous disks. Astron. Astrophys. 650, A49 (2021).
Lin, C. C. & Shu, F. H. On the spiral structure of disk galaxies. Astrophys. J. 140, 646 (1964).
Andrews, S. M., Teague, R., Wirth, C. P., Huang, J. & Zhu, Z. On kinematic measurements of self-gravity in protoplanetary disks. Astrophys. J. 970, 153 (2024).
Padoan, P., Pan, L., Pelkonen, V.-M., Haugbølle, T. & Nordlund, Å. The formation of protoplanetary disks through pre-main-sequence Bondi-Hoyle accretion. Nat. Astron. 9, 862–871 (2025).
Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019).
Galli, P. A. B. et al. Lupus DANCe. Census of stars and 6D structure with Gaia-DR2 data. Astron. Astrophys. 643, A148 (2020).
Huang, J. et al. Large-scale CO spiral arms and complex kinematics associated with the T Tauri star RU Lup. Astrophys. J. 898, 140 (2020).
Öberg, K. I. et al. Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup. Astrophys. J. 810, 112 (2015).
Cleeves, L. I. et al. Variable H13CO+ emission in the IM Lup disk: X-ray driven time-dependent chemistry? Astrophys. J. Lett. 843, L3 (2017).
Pinte, C. et al. Direct mapping of the temperature and velocity gradients in discs. Imaging the vertical CO snow line around IM Lupi. Astron. Astrophys. 609, A47 (2018).
Acknowledgements
We thank K. Tomida for the helpful discussion on the spiral speed. We also thank A. Sierra for providing the calibrated MAPS continuum data. This paper makes use of the following ALMA data: 2016.1.00484.L, 2013.1.00226.S, 2013.1.00694.S, 2013.1.00798.S, 2018.1.01055.L and 2023.1.00525.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSTC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work was supported by a grant-in-aid for JSPS Fellows (Grant No. JP23KJ1008 to T.C.Y.) and JSPS (KAKENHI Grant Nos. 19K03910 and 20H00182 to H.N.).
Author information
Authors and Affiliations
Contributions
T.C.Y. led the observing proposal, data processing, analysis and preparation of the paper. R.T. and M.B.-A. were involved in the discussion regarding the analysis and results as well as in the preparation of the paper. H.N., K.D., K.F., Y.Y. and T.T. participated in writing the observing proposal and the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary discussion, Figs. 1–4 and Tables 1 and 2.
Supplementary Video 1
Animation of the three epoch images (2017, 2019 and 2024). Here 2019 is an average of the images 2019a and 2019b (Fig. 3). For visibility, the spiral structure is emphasized in the following way. First, we extracted the radial intensity profile by taking the azimuthal average of the normalized images. Then, axisymmetric images created using the radial profile were subtracted from the original images with 20% enhanced intensities so that we can easily see the non-axisymmetric structures together with the radial dependence of the intensity. We also plot the spiral ridges specified by ref. 17 with the temporal variations of the ridges expected for the local Keplerian rotation, as in Fig. 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yoshida, T.C., Nomura, H., Doi, K. et al. Winding motion of spirals in a gravitationally unstable protoplanetary disk. Nat Astron 9, 1672–1679 (2025). https://doi.org/10.1038/s41550-025-02639-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02639-y


