Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Winding motion of spirals in a gravitationally unstable protoplanetary disk

Abstract

The discovery of wide-orbit giant exoplanets has posed a challenge to our conventional understanding of planet formation through the coagulation of dust grains and planetesimals and the subsequent accretion of protoplanetary disk gas. As an alternative mechanism, the direct in situ formation of planets or planetary cores by gravitational instability (GI) in protoplanetary disks has been proposed. However, observational evidence for GI in regions where wide-orbit planets form is still lacking. Theoretical studies predict that GI induces spiral arms moving at the local Keplerian speed in a disk. Based on several high-angular-resolution observations over a 7-year time baseline using the Atacama Large Millimeter/submillimeter Array, here we report the evidence for spiral arms following the Keplerian rotation in the dust continuum disk around the young star IM Lup. This demonstrates that GI can operate in wide-orbit planet-forming regions, establishing it as a plausible formation mechanism for such planets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continuum images of the IM Lup disk in the three epochs used in the analysis.
Fig. 2: Deprojected continuum images used in the quantitative analysis.
Fig. 3: Deprojected continuum images after partially subtracting the axisymmetric component.
Fig. 4: Rotation curve of the dust disk.

Similar content being viewed by others

Data availability

The data used for this study are available via the ALMA science archive (https://almascience.nao.ac.jp/aq/). The project IDs are 2016.1.00484.L, 2013.1.00226.S, 2013.1.00694.S, 2013.1.00798.S, 2018.1.01055.L and 2023.1.00525.S.

Code availability

The codes used for the analysis are available from the corresponding author upon reasonable request.

References

  1. Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989 (2013).

    Article  ADS  Google Scholar 

  2. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008).

    Article  ADS  Google Scholar 

  3. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    Article  ADS  Google Scholar 

  4. Armitage, P. J. Astrophysics of Planet Formation (Cambridge Univ. Press, 2020).

  5. Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    Article  ADS  Google Scholar 

  6. Rodet, L. et al. Origin of the wide-orbit circumbinary giant planet HD 106906. A dynamical scenario and its impact on the disk. Astron. Astrophys. 602, A12 (2017).

    Article  Google Scholar 

  7. Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J. & Bonnell, I. A. Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355, 543–552 (2004).

    Article  ADS  Google Scholar 

  8. Boley, A. C. & Durisen, R. H. On the possibility of enrichment and differentiation in gas giants during birth by disk instability. Astrophys. J. 724, 618–639 (2010).

    Article  ADS  Google Scholar 

  9. Baehr, H., Zhu, Z. & Yang, C.-C. Direct formation of planetary embryos in self-gravitating disks. Astrophys. J. 933, 100 (2022).

    Article  ADS  Google Scholar 

  10. Baehr, H. Filling in the gaps: can gravitationally unstable discs form the seeds of gas giant planets? Mon. Not. R. Astron. Soc. 523, 3348–3362 (2023).

    Article  ADS  Google Scholar 

  11. Longarini, C., Lodato, G., Bertin, G. & Armitage, P. J. The role of the drag force in the gravitational stability of dusty planet forming disc. I. Analytical theory. Mon. Not. R. Astron. Soc. 519, 2017–2029 (2023).

    Article  ADS  Google Scholar 

  12. Longarini, C., Armitage, P. J., Lodato, G., Price, D. J. & Ceppi, S. The role of the drag force in the gravitational stability of dusty planet-forming disc. II. Numerical simulations. Mon. Not. R. Astron. Soc. 522, 6217–6235 (2023).

    Article  ADS  Google Scholar 

  13. Rowther, S. et al. The role of drag and gravity on dust concentration in a gravitationally unstable disc. Mon. Not. R. Astron. Soc. 528, 2490–2500 (2024).

    Article  ADS  Google Scholar 

  14. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    Article  ADS  Google Scholar 

  15. Dong, R., Zhu, Z., Rafikov, R. R. & Stone, J. M. Observational signatures of planets in protoplanetary disks: spiral arms observed in scattered light imaging can be induced by planets. Astrophys. J. Lett. 809, L5 (2015).

    Article  ADS  Google Scholar 

  16. Muto, T. et al. Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. Astrophys. J. Lett. 748, L22 (2012).

    Article  ADS  Google Scholar 

  17. Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. Lett. 869, L43 (2018).

    Article  ADS  Google Scholar 

  18. Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018).

    Article  ADS  Google Scholar 

  19. Cuello, N. et al. Flybys in protoplanetary discs. I. Gas and dust dynamics. Mon. Not. R. Astron. Soc. 483, 4114–4139 (2019).

    Article  ADS  Google Scholar 

  20. Montesinos, M. et al. Spiral waves triggered by shadows in transition disks. Astrophys. J. Lett. 823, L8 (2016).

    Article  ADS  Google Scholar 

  21. Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).

    Article  ADS  Google Scholar 

  22. Dong, R., Fung, J. & Chiang, E. How spirals and gaps driven by companions in protoplanetary disks appear in scattered light at arbitrary viewing angles. Astrophys. J. 826, 75 (2016).

    Article  ADS  Google Scholar 

  23. Ren, B. et al. Dynamical evidence of a spiral arm-driving planet in the MWC 758 protoplanetary disk. Astrophys. J. Lett. 898, L38 (2020).

    Article  ADS  Google Scholar 

  24. Xie, C. et al. Dynamical detection of a companion driving a spiral arm in a protoplanetary disk. Astron. Astrophys. 675, L1 (2023).

    Article  ADS  Google Scholar 

  25. Ren, B. B. et al. A companion in V1247 Ori supported by motion in the pattern of the spiral arm. Astron. Astrophys. 681, L2 (2024).

    Article  ADS  Google Scholar 

  26. Hall, C. et al. Predicting the kinematic evidence of gravitational instability. Astrophys. J. 904, 148 (2020).

    Article  ADS  Google Scholar 

  27. Speedie, J. et al. Gravitational instability in a planet-forming disk. Nature 633, 58–62 (2024).

    Article  ADS  Google Scholar 

  28. Teague, R. et al. Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic substructures in the disks of HD 163296 and MWC 480. Astrophys. J. Suppl. Ser. 257, 18 (2021).

    Article  ADS  Google Scholar 

  29. Gaia Collaborationet al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article  Google Scholar 

  30. Andrews, S. M. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869, L41 (2018).

    Article  ADS  Google Scholar 

  31. Avenhaus, H. et al. Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS polarimetric imaging of eight prominent T Tauri disks. Astrophys. J. 863, 44 (2018).

    Article  ADS  Google Scholar 

  32. Öberg, K. I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). I. Program overview and highlights. Astrophys. J. Suppl. Ser. 257, 1 (2021).

    Article  ADS  Google Scholar 

  33. Lodato, G. et al. Dynamical mass measurements of two protoplanetary discs. Mon. Not. R. Astron. Soc. 518, 4481–4493 (2023).

    Article  ADS  Google Scholar 

  34. Paneque-Carreño, T. et al. High turbulence in the IM Lup protoplanetary disk. Direct observational constraints from CN and C2H emission. Astron. Astrophys. 684, A174 (2024).

    Article  Google Scholar 

  35. Bosman, A. D., Appelgren, J., Bergin, E. A., Lambrechts, M. & Johansen, A. A potential site for wide-orbit giant planet formation in the IM Lup disk. Astrophys. J. Lett. 944, L53 (2023).

    Article  ADS  Google Scholar 

  36. Ueda, T., Tazaki, R., Okuzumi, S., Flock, M. & Sudarshan, P. Support for fragile porous dust in a gravitationally self-regulated disk around IM Lup. Nat. Astron. 8, 1148–1158 (2024).

    Article  ADS  Google Scholar 

  37. Pinte, C. et al. Nine localized deviations from Keplerian rotation in the DSHARP circumstellar disks: kinematic evidence for protoplanets carving the gaps. Astrophys. J. Lett. 890, L9 (2020).

    Article  ADS  Google Scholar 

  38. Verrios, H. J., Price, D. J., Pinte, C., Hilder, T. & Calcino, J. Kinematic evidence for an embedded planet in the IM Lupi disk. Astrophys. J. Lett. 934, L11 (2022).

    Article  ADS  Google Scholar 

  39. Winter, A. J., Benisty, M. & Andrews, S. M. Planet formation regulated by Galactic-scale interstellar turbulence. Astrophys. J. Lett. 972, L9 (2024).

    Article  ADS  Google Scholar 

  40. Winter, A. J., Benisty, M., Manara, C. F. & Gupta, A. Spatially correlated stellar accretion in the Lupus star forming region: evidence for ongoing infall from the interstellar medium. Astron. Astrophys. 691, A169 (2024).

    Article  ADS  Google Scholar 

  41. Harsono, D., Alexander, R. D. & Levin, Y. Global gravitational instabilities in discs with infall. Mon. Not. R. Astron. Soc. 413, 423–433 (2011).

    Article  ADS  Google Scholar 

  42. Tsukamoto, Y. & Machida, M. N. Classification of the circumstellar disc evolution during the main accretion phase. Mon. Not. R. Astron. Soc. 416, 591–600 (2011).

    ADS  Google Scholar 

  43. Tsukamoto, Y., Takahashi, S. Z., Machida, M. N. & Inutsuka, S. Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Mon. Not. R. Astron. Soc. 446, 1175–1190 (2015).

    Article  ADS  Google Scholar 

  44. Tomida, K., Machida, M. N., Hosokawa, T., Sakurai, Y. & Lin, C. H. Grand-design spiral arms in a young forming circumstellar disk. Astrophys. J. Lett. 835, L11 (2017).

    Article  ADS  Google Scholar 

  45. Speedie, J. et al. Mapping the merging zone of late infall in the AB Aur planet-forming system. Astrophys. J. Lett. 981, L30 (2025).

    Article  ADS  Google Scholar 

  46. Kratter, K. M., Murray-Clay, R. A. & Youdin, A. N. The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. Astrophys. J. 710, 1375–1386 (2010).

    Article  ADS  Google Scholar 

  47. Teague, R. et al. Gas and dust shadows in the TW Hydrae disk. Astrophys. J. 930, 144 (2022).

    Article  ADS  Google Scholar 

  48. Debes, J. et al. The surprising evolution of the shadow on the TW Hya disk. Astrophys. J. 948, 36 (2023).

    Article  ADS  Google Scholar 

  49. Kuo, I. H. G., Yen, H.-W. & Gu, P.-G. ALMA observations of proper motions of the dust clumps in the protoplanetary disk MWC 758. Astrophys. J. Lett. 975, L33 (2024).

    Article  ADS  Google Scholar 

  50. Cortes, P. et al. ALMA Cycle 10 Technical Handbook. Zenodo https://doi.org/10.5281/zenodo.7822943 (2023).

  51. CASA Teamet al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article  ADS  Google Scholar 

  52. Sierra, A. et al. Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing disk substructures in multiwavelength continuum emission. Astrophys. J. Suppl. Ser. 257, 14 (2021).

    Article  ADS  Google Scholar 

  53. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  54. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  55. Dipierro, G., Lodato, G., Testi, L. & de Gregorio Monsalvo, I. How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014).

    Article  ADS  Google Scholar 

  56. Béthune, W., Latter, H. & Kley, W. Spiral structures in gravito-turbulent gaseous disks. Astron. Astrophys. 650, A49 (2021).

    Article  ADS  Google Scholar 

  57. Lin, C. C. & Shu, F. H. On the spiral structure of disk galaxies. Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  58. Andrews, S. M., Teague, R., Wirth, C. P., Huang, J. & Zhu, Z. On kinematic measurements of self-gravity in protoplanetary disks. Astrophys. J. 970, 153 (2024).

    Article  ADS  Google Scholar 

  59. Padoan, P., Pan, L., Pelkonen, V.-M., Haugbølle, T. & Nordlund, Å. The formation of protoplanetary disks through pre-main-sequence Bondi-Hoyle accretion. Nat. Astron. 9, 862–871 (2025).

    Article  ADS  Google Scholar 

  60. Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019).

    Article  ADS  Google Scholar 

  61. Galli, P. A. B. et al. Lupus DANCe. Census of stars and 6D structure with Gaia-DR2 data. Astron. Astrophys. 643, A148 (2020).

    Article  Google Scholar 

  62. Huang, J. et al. Large-scale CO spiral arms and complex kinematics associated with the T Tauri star RU Lup. Astrophys. J. 898, 140 (2020).

    Article  ADS  Google Scholar 

  63. Öberg, K. I. et al. Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup. Astrophys. J. 810, 112 (2015).

    Article  ADS  Google Scholar 

  64. Cleeves, L. I. et al. Variable H13CO+ emission in the IM Lup disk: X-ray driven time-dependent chemistry? Astrophys. J. Lett. 843, L3 (2017).

    Article  ADS  Google Scholar 

  65. Pinte, C. et al. Direct mapping of the temperature and velocity gradients in discs. Imaging the vertical CO snow line around IM Lupi. Astron. Astrophys. 609, A47 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Tomida for the helpful discussion on the spiral speed. We also thank A. Sierra for providing the calibrated MAPS continuum data. This paper makes use of the following ALMA data: 2016.1.00484.L, 2013.1.00226.S, 2013.1.00694.S, 2013.1.00798.S, 2018.1.01055.L and 2023.1.00525.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSTC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work was supported by a grant-in-aid for JSPS Fellows (Grant No. JP23KJ1008 to T.C.Y.) and JSPS (KAKENHI Grant Nos. 19K03910 and 20H00182 to H.N.).

Author information

Authors and Affiliations

Authors

Contributions

T.C.Y. led the observing proposal, data processing, analysis and preparation of the paper. R.T. and M.B.-A. were involved in the discussion regarding the analysis and results as well as in the preparation of the paper. H.N., K.D., K.F., Y.Y. and T.T. participated in writing the observing proposal and the paper.

Corresponding author

Correspondence to Tomohiro C. Yoshida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–4 and Tables 1 and 2.

Supplementary Video 1

Animation of the three epoch images (2017, 2019 and 2024). Here 2019 is an average of the images 2019a and 2019b (Fig. 3). For visibility, the spiral structure is emphasized in the following way. First, we extracted the radial intensity profile by taking the azimuthal average of the normalized images. Then, axisymmetric images created using the radial profile were subtracted from the original images with 20% enhanced intensities so that we can easily see the non-axisymmetric structures together with the radial dependence of the intensity. We also plot the spiral ridges specified by ref. 17 with the temporal variations of the ridges expected for the local Keplerian rotation, as in Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T.C., Nomura, H., Doi, K. et al. Winding motion of spirals in a gravitationally unstable protoplanetary disk. Nat Astron 9, 1672–1679 (2025). https://doi.org/10.1038/s41550-025-02639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02639-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing