Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights from early life in the 3.45-Ga Kitty’s Gap Chert for the search for elusive life in the Universe

Subjects

Abstract

The search for extraterrestrial life and habitable planets is at the heart of many space missions. A vast range of biosignatures have been proposed for this purpose, but such signatures are predicated on a concatenation of circumstances related to the geological evolution of the Earth and the co-evolution of life. However, an extraterrestrial observer could probably have detected any biosignature for Earth only in the last 800 Myr, even though Earth has probably been inhabited since the Hadean (4.56–4.0 Ga). The nature of life for the greater part of a planet’s history would thus be undetermined. Here we analyse 3.45-Gyr-old volcanic sediments from the Kitty’s Gap Chert (Pilbara, Australia), a Mars-analogue location, to characterize the nature of the microfossils contained therein. We conclude that the most common forms of extraterrestrial life on a rocky planet will be similar to terrestrial chemotrophic organisms, specifically chemolithotrophs, which are notoriously difficult to detect and identify. This study highlights the difficulties in determining the biogenicity and syngenicity of signatures in a sample and shows the importance of terrestrial analogue examples for demonstrating the methodological challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Telescopes involved in the search for habitable planets and life.
Fig. 2: Mineralogical contexts of the purported microfossils in the areas analysed by the J105 cluster SIMS instrument.
Fig. 3: J105 cluster SIMS positive-ion image maps and principal component analysis of areas containing interpreted microfossil colonies.
Fig. 4: Principal component analysis of ROI 2.

Similar content being viewed by others

Data availability

The instrumental data supporting the experimental results in this study are available at https://astromat.org and within the manuscript and its Supplementary Information file. Additional information can be provided upon reasonable request.

References

  1. De Duve, C. Vital Dust: the Origin and Evolution of Life on Earth (Basic, 1995).

  2. Pace, N. R. The universal nature of biochemistry. Proc. Natl Acad. Sci. USA 98, 805–808 (2001).

    Article  ADS  Google Scholar 

  3. Cockell, C. S. The similarity of life across the Universe. Mol. Biol. Cell 27, 1553–1555 (2016).

    Article  Google Scholar 

  4. Brack, A. in Astrobiology: the Quest for the Conditions of Life 79–88 (Springer, 2002).

  5. Westall, F. & Brack, A. The importance of water for life. Space Sci. Rev. 214, 50 (2018).

    Article  ADS  Google Scholar 

  6. Westall, F. et al. The habitability of Venus. Space Sci. Rev. 219, 17 (2023).

    Article  ADS  Google Scholar 

  7. Sleep, N. H., Zahnle, K. J. & Lupu, R. E. Terrestrial aftermath of the Moon-forming impact. Philos. Trans. R. Soc. A 372, 20130172 (2014).

    Article  ADS  Google Scholar 

  8. Takai, K., Nakamura, K., Toki, T. & Horikishi, K. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  ADS  Google Scholar 

  9. Lowe, D. R., Ibarra, D. E., Drabon, N. & Chamberlain, C. P. Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection. Am. J. Sci. 320, 790–814 (2020).

    Article  ADS  Google Scholar 

  10. Sephton, M. A. & Botta, O. Recognizing life in the Solar System: guidance from meteoritic organic matter. Int. J. Astrobiol. 4, 269–276 (2005).

    Article  ADS  Google Scholar 

  11. Schwander, L. et al. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front. Microbiol. 14, 1257597 (2023).

    Article  Google Scholar 

  12. Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L. & Bada, J. L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 38, 105–115 (2008).

    Article  ADS  Google Scholar 

  13. Miller, S. L. & Cleaves, H. J. in Systems Biology (eds Rigoutsos, I. & Stephanopoulos, G.) 3–56 (Oxford Univ. Press, 2006).

  14. Quanz, S. P. et al. Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability, and diversity. Exp. Astron. 54, 1197–1221 (2021).

    Article  ADS  Google Scholar 

  15. Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).

    Article  ADS  Google Scholar 

  16. Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).

    Article  ADS  Google Scholar 

  17. Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).

    Article  ADS  Google Scholar 

  18. Greaves, J. S. et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 5, 655–664 (2021).

    Article  ADS  Google Scholar 

  19. Haqq-Misra, J. et al. Opportunities for technosignature science in the Astro2020 Report. Preprint at https://arxiv.org/abs/2203.08968 (2022).

  20. Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).

    Article  ADS  Google Scholar 

  21. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  ADS  Google Scholar 

  22. Robbins, L. J. et al. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth Sci. Rev. 239, 104368 (2023).

    Article  Google Scholar 

  23. Grosch, E. G. & Hazen, R. M. Microbes, mineral evolution, and the rise of microcontinents—origin and coevolution of life with early earth. Astrobiology 15, 922–939 (2015).

    Article  ADS  Google Scholar 

  24. Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Philos. Trans. R. Soc. A 376, 20170405 (2018).

    Article  ADS  Google Scholar 

  25. Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

    Article  ADS  Google Scholar 

  26. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  ADS  Google Scholar 

  27. Neveu, M., Hays, L. E., Voytek, M. A., New, M. H. & Schulte, M. D. The Ladder of Life Detection. Astrobiology 18, 1375–1402 (2018).

    Article  ADS  Google Scholar 

  28. Lammer, H. et al. CME activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets, part II: CME induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185–207 (2007).

    Article  ADS  Google Scholar 

  29. Cockell, C. S. & Raven, J. A. Zones of photosynthetic potential on Mars and the early Earth. Icarus 169, 300–310 (2004).

    Article  ADS  Google Scholar 

  30. Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680 (2005).

    Article  ADS  Google Scholar 

  31. Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D. & Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 365, 715–721 (1993).

    Article  ADS  Google Scholar 

  32. Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    Article  ADS  Google Scholar 

  33. Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article  Google Scholar 

  34. Westall, F. et al. Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).

    Article  ADS  Google Scholar 

  35. Westall, F. & Xiao, S. Precambrian Earth: co-evolution of life and geodynamics. Precambrian Res. 414, 107589 (2024).

    Article  Google Scholar 

  36. Westall, F. et al. in Processes on the Early Earth (eds Reimold, W. U. & Gibson, R. L.) 105–131 (Geological Society of America, 2006).

  37. Milojevic, T. et al. Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation. Commun. Earth Environ. 2, 39 (2021).

    Article  ADS  Google Scholar 

  38. Westall, F. et al. Volcaniclastic habitats for early life on Earth and Mars: a case study from 3.5Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59, 1093–1106 (2011).

    Article  ADS  Google Scholar 

  39. McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996).

    Article  ADS  Google Scholar 

  40. Treiman, A. H. Uninhabitable and potentially habitable environments on Mars: evidence from meteorite ALH 84001. Astrobiology 21, 940–953 (2021).

    Article  ADS  Google Scholar 

  41. Wacey, D., Noffke, N., Saunders, M., Guagliardo, P. & Pyle, D. M. Volcanogenic pseudo-fossils from the 3.48 Ga dresser formation, Pilbara, Western Australia. Astrobiology 18, 539–555 (2018).

    Article  ADS  Google Scholar 

  42. Clodoré, L. et al. Multi-technique characterization of 3.45 Ga microfossils on Earth: a key approach to detect possible traces of life in returned samples from Mars. Astrobiology 24, 190–226 (2024).

    Article  ADS  Google Scholar 

  43. McCutchin, C. A., Edgar, K. J., Chen, C.-L. & Dove, P. M. Silica–biomacromolecule interactions: toward a mechanistic understanding of silicification. Biomacromolecules 26, 43–84 (2025).

  44. Westall, F., Boni, L. & Guerzoni, M. E. The experimental silicification of microbes. Palaeontology 38, 495–528 (1995).

    Google Scholar 

  45. Orange, F. et al. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7, 403–418 (2009).

    Article  Google Scholar 

  46. Lin, R. & Ritz, G. P. Studying individual macerals using IR microspectrometry, and implications on oil versus gas/condensate proneness and “low-rank” generation. Org. Geochem. 20, 695–706 (1993).

    Article  ADS  Google Scholar 

  47. Igisu, M., Ueno, Y. & Takai, K. FTIR microspectroscopy of carbonaceous matter in ~3.5 Ga seafloor hydrothermal deposits in the North Pole area, Western Australia. Prog. Earth Planet. Sci. 5, 85 (2018).

    Article  ADS  Google Scholar 

  48. Hickman-Lewis, K., Westall, F. & Cavalazzi, B. Diverse communities of Bacteria and Archaea flourished in Palaeoarchaean (3.5–3.3 Ga) microbial mats. Palaeontology 63, 1007–1033 (2020).

    Article  Google Scholar 

  49. Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. in Strategies of Life Detection Space Sciences Series of ISSI vol. 25 (eds Botta, O. et al). 133–159 (Springer, 2008).

  50. Vago, J. L. et al. Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17, 471–510 (2017).

    Article  ADS  Google Scholar 

  51. Fadel, A., Lepot, K., Nuns, N., Regnier, S. & Riboulleau, A. New preparation techniques for molecular and in‐situ analysis of ancient organic micro‐and nanostructures. Geobiology 18, 445–461 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The following entities are acknowledged for their funding: the CNRS (F.W. and F.F.), the CNES (F.W., F.F. and L.C.), the European Union’s Horizon 2020 Framework Programme, grant number ERC-2020-COG, project 101001311—BIOMAMA (T.M.) and grant ANR-22-CPJ1-0066-01 (T.M.). V. Bazin is thanked for help with the SEM acquisitions.

Author information

Authors and Affiliations

Authors

Contributions

Conception of the project, sample collection, contribution to all analyses and general interpretation, and writing are attributed to F.W. N.S. carried out the cluster SIMS analysis and interpretation, to which G.P. and J.S. contributed. J.S. carried out the HIM acquisitions; L.C. and F.F. carried out the Raman analyses. T.M. contributed to the microbiology of chemolithotrophs. All authors contributed to the writing.

Corresponding author

Correspondence to Frances Westall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Dominic Papineau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–15, Tables 1 and 2 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westall, F., Purvis, G., Sano, N. et al. Insights from early life in the 3.45-Ga Kitty’s Gap Chert for the search for elusive life in the Universe. Nat Astron 9, 1615–1623 (2025). https://doi.org/10.1038/s41550-025-02661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02661-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing