Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The early Universe with JWST and ALMA

Abstract

The Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope are transforming our understanding of galaxy formation and evolution in the early Universe. By combining their capabilities, these observatories provide unprecedented insights into the gas, dust and stars of high-redshift galaxies at spatially resolved scales, unveiling the complexities of their interstellar medium, kinematics, morphology, active galactic nuclei and star-formation activity. This review summarizes recent breakthroughs in the study of galaxies during the first billion years of cosmic history, highlighting key discoveries, open questions and current limitations. We discuss how observations, theoretical models and simulations are shaping our understanding of early galaxy evolution and identify promising directions for future research. While substantial progress can be achieved through optimized use of existing facilities and collaborative efforts, further advances will require enhanced angular resolution and sensitivity, motivating upgrades to current instruments and the development of next-generation observatories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALMA and JWST views of stars and the ISM in high-redshift galaxies.
Fig. 2: High-redshift galaxies observed with ALMA and JWST.
Fig. 3: Cosmological zoom-in simulation of a star-forming galaxy at z = 6.5.
Fig. 4: Multiwavelength view of a star-forming galaxy at z ≈ 4.5 with ALMA, HST and JWST.
Fig. 5: Black hole–stellar mass relation in nearby and z 4 AGN galaxies.

Similar content being viewed by others

References

  1. Tamura, Y. et al. Detection of the far-infrared [O III] and dust emission in a galaxy at redshift 8.312: early metal enrichment in the heart of the reionization era. Astrophys. J. 874, 27 (2019).

    Article  ADS  Google Scholar 

  2. Witstok, J. et al. Dual constraints with ALMA: new [O III] 88-μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at z ~ 7. Mon. Not. R. Astron. Soc. 515, 1751–1773 (2022).

    Article  ADS  Google Scholar 

  3. Algera, H. S. B. et al. The ALMA REBELS survey: the dust-obscured cosmic star formation rate density at redshift 7. Mon. Not. R. Astron. Soc. 518, 6142–6161 (2023).

    Article  ADS  Google Scholar 

  4. Mauerhofer, V. & Dayal, P. The dust enrichment of early galaxies in the JWST and ALMA era. Mon. Not. R. Astron. Soc. 526, 2196–2210 (2023).

    Article  ADS  Google Scholar 

  5. Palla, M. et al. Metal and dust evolution in ALMA REBELS galaxies: insights for future JWST observations. Mon. Not. R. Astron. Soc. 528, 2407–2423 (2024).

    Article  ADS  Google Scholar 

  6. Witstok, J. et al. Carbonaceous dust grains seen in the first billion years of cosmic time. Nature 621, 267–270 (2023).

    Article  ADS  Google Scholar 

  7. Spilker, J. S. et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 618, 708–712 (2023).

    Article  ADS  Google Scholar 

  8. D’Eugenio, F. et al. JADES: carbon enrichment 350 Myr after the Big Bang. Astron. Astrophys. 689, 152 (2024).

    Article  Google Scholar 

  9. Castellano, M. et al. JWST NIRSpec spectroscopy of the remarkable bright galaxy GHZ2/GLASS-z12 at redshift 12.34. Astrophys. J. 972, 2 (2024).

    Article  Google Scholar 

  10. Placco, V. et al. Carbon-enhanced metal-poor star frequencies in the Galaxy: corrections for the effect of evolutionary status on carbon abundances. Astrophys. J. 797, 1 (2014).

    Article  Google Scholar 

  11. Carniani, S. et al. The eventful life of a luminous galaxy at z = 14: metal enrichment, feedback, and low gas fraction. Astron. Astrophys. 696, 87 (2025).

    Article  Google Scholar 

  12. Schouws, S. et al. Detection of [O III] 88 μm in JADES-GS-z14-0 at z = 14.1793. Astrophys. J. 977, L9 (2024).

    Google Scholar 

  13. Ferrara, A., Pallottini, A. & Sommovigo, L. Blue monsters at z > 10: where has all their dust gone?. Astron. Astrophys. 694, 286 (2025).

    Article  ADS  Google Scholar 

  14. Sanders, R. et al. The AURORA Survey: high-redshift empirical metallicity calibrations from electron temperature measurements at z = 2–10. Preprint at https://arxiv.org/abs/2508.10099 (2025).

  15. Harikane, Y. et al. JWST and ALMA joint analysis with [O II] λλ3726, 3729, [O III] λ4363, [O III] 88 μm, and [O III] 52 μm: Multizone evolution of electron densities at z 0–14 and its impact on metallicity measurements. Astrophys. J. 993, 204 (2025).

  16. Isobe, Y. et al. Redshift evolution of electron density in the interstellar medium at z 0–9 uncovered with JWST/NIRSpec spectra and line-spread function determinations. Astrophys. J. 956, 139 (2023).

    Article  ADS  Google Scholar 

  17. Laseter, I. H. et al. JADES NIRSpec spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 681, A70 (2024).

    Article  Google Scholar 

  18. Bunker, A. et al. JADES NIRSpec spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 677, 88 (2023).

    Article  Google Scholar 

  19. Isobe, Y. et al. JADES: nitrogen enhancement in high-redshift broad-line active galactic nuclei. Mon. Not. R. Astron. Soc. 541, L71 (2025).

    Article  ADS  Google Scholar 

  20. Cameron, A. et al. Nitrogen enhancements 440 Myr after the big bang: supersolar N/O, a tidal disruption event, or a dense stellar cluster in GN-z11?. Mon. Not. R. Astron. Soc. 523, 3516 (2023).

    Article  ADS  Google Scholar 

  21. Le Fèvre, O. et al. The ALPINE-ALMA [CII] survey: multi-wavelength ancillary data and basic physical measurements. Astron. Astrophys. 643, A1 (2020).

    Google Scholar 

  22. Béthermin, M. et al. The ALPINE-ALMA [CII] survey: data processing, catalogs, and statistical source properties. Astron. Astrophys. 643, A2 (2020).

    Article  Google Scholar 

  23. Faisst, A. L. et al. The ALPINE-ALMA [CII] survey: physical conditions, origins, and fate of the [CII] halos. Mon. Not. R. Astron. Soc. 498, 4192–4210 (2020).

    Article  ADS  Google Scholar 

  24. Herrera-Camus, R. et al. The ALMA-CRISTAL survey: gas, dust, and stars in star-forming galaxies when the Universe was 1 Gyr old I. Survey overview and case studies. Astron. Astrophys. 699, A80 (2025).

    Article  Google Scholar 

  25. Bouwens, R. J. et al. Reionization Era Bright Emission Line Survey: selection and characterization of luminous interstellar medium reservoirs in the z > 6.5 universe. Astrophys. J. 931, 160 (2022).

    Article  ADS  Google Scholar 

  26. Harikane, Y. et al. Large population of ALMA galaxies at z > 6 with very high [O III] 88 μm to [C II] 158 μm flux ratios: evidence of extremely high ionization parameter or PDR deficit?. Astrophys. J. 896, 93 (2020).

    Article  ADS  Google Scholar 

  27. Witstok, J. et al. Dual constraints with ALMA: new [O III] 88-μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at z = 7. Mon. Not. R. Astron. Soc. 515, 1751–1764 (2022).

    Article  ADS  Google Scholar 

  28. Inoue, A. K. et al. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch. Science 352, 1559–1562 (2016).

    Article  ADS  Google Scholar 

  29. Algera, H. S. B. et al. Cold dust and low [O III]/[C II] ratios: an evolved star-forming population at redshift 7. Mon. Not. R. Astron. Soc. 527, 6867–6880 (2024).

    Article  ADS  Google Scholar 

  30. Vallini, L., Ferrara, A., Pallottini, A., Carniani, S. & Gallerani, S. High [O III]/[C II] surface brightness ratios trace early starburst galaxies. Mon. Not. R. Astron. Soc. 505, 5543–5553 (2021).

    Article  ADS  Google Scholar 

  31. Katz, H. et al. The nature of high [O III]88 μ m/[C II]158 μm galaxies in the epoch of reionization: low carbon abundance and a top-heavy IMF? Mon. Not. R. Astron. Soc. 510, 5603–5622 (2022).

    Article  ADS  Google Scholar 

  32. Gelli, V., Mason, C. & Hayward, C. C. The impact of mass-dependent stochasticity at cosmic dawn. Astrophys. J. 975, 192 (2024).

    Article  ADS  Google Scholar 

  33. Sommovigo, L. et al. Dust temperature in ALMA [C II]-detected high-z galaxies. Mon. Not. R. Astron. Soc. 503, 4878–4889 (2021).

    Article  ADS  Google Scholar 

  34. Li, J. et al. The ALMA-CRISTAL Survey: spatially resolved star formation activity and dust content in 4 < z < 6 star-forming galaxies. Astrophys. J. 976, 70 (2024).

    Article  ADS  Google Scholar 

  35. Lines, N. E. P. et al. JWST PRIMER: a lack of outshining in four normal z = 4–6 galaxies from the ALMA-CRISTAL Survey. Mon. Not. R. Astron. Soc. 539, 2685–2706 (2025).

    Article  ADS  Google Scholar 

  36. Villanueva, V. et al. The ALMA-CRISTAL survey: dust temperature and physical conditions of the interstellar medium in a typical galaxy at z = 5.66. Astron. Astrophys. 691, A133 (2024).

    Article  Google Scholar 

  37. Mitsuhashi, I. et al. SERENADE. II. An ALMA multiband dust continuum analysis of 28 galaxies at 5 < z < 8 and the physical origin of the dust temperature evolution. Astrophys. J. 971, 161 (2024).

    Article  ADS  Google Scholar 

  38. Pallottini, A. et al. A survey of high-z galaxies: SERRA simulations. Mon. Not. R. Astron. Soc. 513, 5621–5641 (2022).

    ADS  Google Scholar 

  39. Vallini, L. Spatially resolved [CII]–gas conversion factor in early galaxies. Astron. Astrophys. 700, A117 (2025).

    Article  Google Scholar 

  40. Nakazato, Y., Yoshida, N. & Ceverino, D. Simulations of high-redshift [O III] emitters: chemical evolution and multiline diagnostics. Astrophys. J. 953, 140 (2023).

    Article  ADS  Google Scholar 

  41. Katz, H. et al. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007. Mon. Not. R. Astron. Soc. 518, 592–604 (2023).

    Article  ADS  Google Scholar 

  42. Schimek, A. et al. Constraining the physical properties of gas in high-z galaxies with far-infrared and submillimetre line ratios. Astron. Astrophys. 687, L10 (2024).

    Article  ADS  Google Scholar 

  43. Tadaki, K.-i. et al. CNO emission of an unlensed submillimeter galaxy at z = 4.3. Astrophys. J. 876, 1 (2019).

    Article  ADS  Google Scholar 

  44. Vallini, L., Ferrara, A., Pallottini, A., Carniani, S. & Gallerani, S. Star formation law in the epoch of reionization from [C II] and C III] lines. Mon. Not. R. Astron. Soc. 495, L22–L26 (2020).

    Article  ADS  Google Scholar 

  45. Jones, T. et al. The mass–metallicity relation at z 8: direct-method metallicity constraints and near-future prospects. Astrophys. J. 903, 150 (2020).

    Article  ADS  Google Scholar 

  46. Aravena, M. et al. The ALMA Reionization Era Bright Emission Line Survey: the molecular gas content of galaxies at z = 7. Astron. Astrophys. 682, A24 (2024).

    Article  Google Scholar 

  47. Dessauges-Zavadsky, M. et al. The ALPINE-ALMA [C II] survey: molecular gas budget in the early Universe as traced by [C II]. Astron. Astrophys. 643, A5 (2020).

    Article  Google Scholar 

  48. Herrera-Camus, R. et al. Kiloparsec view of a typical star-forming galaxy when the Universe was 1 Gyr old. I. Properties of outflow, halo, and interstellar medium. Astron. Astrophys. 649, A31 (2021).

    Article  Google Scholar 

  49. Heintz, K. E. et al. Measuring the H I content of individual galaxies out to the epoch of reionization with [C II]. Astrophys. J. 922, 147 (2021).

    Article  ADS  Google Scholar 

  50. Wilson, S. A high-redshift calibration of the [O I]-to-H I conversion factor in star-forming galaxies. Astron. Astrophys. 685, A30 (2024).

    Article  Google Scholar 

  51. Heintz, K. E. et al. Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11. Science 384, 890–894 (2024).

    Article  ADS  Google Scholar 

  52. Carpenter, J. et al. in Physics and Chemistry of Star Formation: the Dynamical ISM Across Time and Spatial Scales (eds Ossenkopf-Okada, V. et al.) 304 (Universitäts- und Stadtbibliothek Köln, 2023).

  53. Rizzo, F. et al. Dynamical properties of z 4.5 dusty star-forming galaxies and their connection with local early-type galaxies. Mon. Not. R. Astron. Soc. 507, 3952–3984 (2021).

    Article  ADS  Google Scholar 

  54. Neeleman, M. et al. A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature 581, 269–272 (2020).

    Article  ADS  Google Scholar 

  55. Danhaive, A. L. et al. The dawn of disks: unveiling the turbulent ionised gas kinematics of the galaxy population at z 4−6 with JWST/NIRCam grism spectroscopy. Mon. Not. R. Astron. Soc. 543, 3249–3302 (2025).

    Article  ADS  Google Scholar 

  56. Kohandel, M. et al. Dynamically cold disks in the early Universe: myth or reality?. Astron. Astrophys. 685, A72 (2024).

    Article  Google Scholar 

  57. Lee, L. et al. The ALMA-CRISTAL survey: resolved kinematic studies of main sequence star-forming galaxies at 4 < z < 6. Astron. Astrophys. 701, 260 (2025).

    Article  Google Scholar 

  58. Ferreira, L. et al. The JWST Hubble Sequence: the rest-frame optical evolution of galaxy structure at 1.5 < z < 6.5. Astrophys. J. 955, 94 (2023).

    Article  ADS  Google Scholar 

  59. Fujimoto, S. et al. Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn. Nat. Astron. 9, 1553–1567 (2025).

    Article  ADS  Google Scholar 

  60. Rowland, L. E. et al. REBELS-25: discovery of a dynamically cold disc galaxy at z = 7.31. Mon. Not. R. Astron. Soc. 535, 2068–2091 (2024).

    Article  ADS  Google Scholar 

  61. Förster Schreiber, N. M. & Wuyts, S. Star-forming galaxies at cosmic noon. Annu. Rev. Astron. Astrophys. 58, 661–705 (2020).

    Article  ADS  Google Scholar 

  62. Übler, H. et al. GA-NIFS: NIRSpec reveals evidence for non-circular motions and AGN feedback in GN20. Mon. Not. R. Astron. Soc. 533, 4287–4301 (2024).

    Article  ADS  Google Scholar 

  63. Genzel, R. et al. Evidence for large-scale, rapid gas inflows in z ~ 2 star-forming disks. Astrophys. J. 957, 48 (2023).

    Article  ADS  Google Scholar 

  64. Fujimoto, S. et al. The ALPINE-ALMA [C II] survey: size of individual star-forming galaxies at z = 4–6 and their extended halo structure. Astrophys. J. 900, 1 (2020).

    Article  ADS  Google Scholar 

  65. Lambert, T. S. et al. An extended [C II] halo around a massive star-forming galaxy at z = 5.3. Mon. Not. R. Astron. Soc. 518, 3183–3191 (2024).

    Article  ADS  Google Scholar 

  66. Ikeda, R. et al. The ALMA-CRISTAL Survey: spatial extent of [C II] line emission in star-forming galaxies at z = 4–6. Astron. Astrophys. 693, A237 (2025).

    Article  Google Scholar 

  67. Pizzati, E. et al. [C II] haloes in ALPINE galaxies: smoking-gun of galactic outflows?. Astron. Astrophys. 673, A39 (2023).

    Google Scholar 

  68. Rey, M. et al. (2024). ARCHITECTS I: impact of subgrid physics on the simulated properties of the circumgalactic medium. Mon. Not. R. Astron. Soc. 543, 12–27 (2025).

    Article  ADS  Google Scholar 

  69. Solimano, M. et al. The ALMA-CRISTAL Survey: discovery of a 15 kpc-long gas plume in a z = 4.54 Lyman-α blob. Astron. Astrophys. 689, A145 (2024).

    Article  Google Scholar 

  70. Solimano, M. et al. A hidden active galactic nucleus powering bright [O III] nebulae in a protocluster at z = 4.5 revealed by JWST. Astron. Astrophys. 693, A70 (2025).

    Article  Google Scholar 

  71. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4–7: detection of 10 faint AGNs with MBH ~ 106–108 M and their host galaxy properties. Astrophys. J. 959, 39 (2023).

    Article  ADS  Google Scholar 

  72. Maiolino, R. et al. JADES: the diverse population of infant black holes at 4 < z < 11: merging, tiny, poor, but mighty. Astron. Astrophys. 691, A145 (2024).

    Article  Google Scholar 

  73. Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    Article  ADS  Google Scholar 

  74. Li, J. et al. Tip of the iceberg: overmassive black holes at 4 < z < 7 found by JWST are not inconsistent with the local MBHM relation. Astrophys. J. 981, 19 (2025).

    Article  ADS  Google Scholar 

  75. Volonteri, M. et al. What if young z > 9 JWST galaxies hosted massive black holes?. Mon. Not. R. Astron. Soc. 521, 241 (2023).

    Article  ADS  Google Scholar 

  76. Lauer, T. R. et al. The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808–834 (2007).

    Article  ADS  Google Scholar 

  77. Dayal, P. et al. Exploring a primordial solution for early black holes detected with JWST. Astron. Astrophys. 690, A182 (2024).

    Article  ADS  Google Scholar 

  78. Natarajan, P. et al. First light of supermassive black holes: evidence for a heavy-seed origin. Astrophys. J. 960, L1 (2024).

    Article  ADS  Google Scholar 

  79. Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article  ADS  Google Scholar 

  80. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).

    Article  ADS  Google Scholar 

  81. Setton, D. et al. A confirmed deficit of hot and cold dust emission in the most luminous little red dots. Astrophys. J. Lett. 991, L10 (2025).

    Article  ADS  Google Scholar 

  82. Inayoshi, K. & Maiolino, R. Extremely dense gas around little red dots and high-redshift active galactic nuclei: a nonstellar origin of the Balmer break and absorption features. Astrophys. J. Lett. 980, L27 (2025).

    Article  ADS  Google Scholar 

  83. Akins, H. B. et al. COSMOS-Web: the over-abundance and physical nature of ‘little red dots’—implications for early galaxy and SMBH assembly. Astrophys. J. 991, 1 (2025).

    Article  Google Scholar 

  84. Pérez-González, P. G. et al. What is the nature of little red dots and what is not, MIRI SMILES edition. Astrophys. J. 968, 4 (2024).

    Article  ADS  Google Scholar 

  85. Juodžbalis, I. et al. A direct black hole mass measurement in a Little Red Dot at the Epoch of Reionization. Preprint at https://arxiv.org/abs/2508.21748 (2025).

  86. Lupi, A. et al. Size matters: are we witnessing super-Eddington accretion in high-redshift black holes from JWST?. Astron. Astrophys. 689, A128 (2024).

    Article  Google Scholar 

  87. Greene, J. E. & Ho, L. C. The mass function of active black holes in the local Universe. Astrophys. J. 667, 131 (2007).

    Article  ADS  Google Scholar 

  88. Buchner, J. et al. Genuine Retrieval of the AGN Host Stellar Population (GRAHSP). Astron. Astrophys. 692, A161 (2025).

    Article  Google Scholar 

  89. Übler, H. et al. GA-NIFS: JWST discovers an offset AGN 740 million years after the Big Bang. Mon. Not. R. Astron. Soc. 531, 355–365 (2024).

    Article  ADS  Google Scholar 

  90. Abuter, R. et al. A dynamical measure of the black hole mass in a quasar 11 billion years ago. Nature 627, 281–285 (2024).

    Article  ADS  Google Scholar 

  91. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article  ADS  Google Scholar 

  92. Carniani, S. et al. JADES: the incidence rate and properties of galactic outflows in low-mass galaxies across z < 9. Astron. Astrophys. 685, A99 (2024).

    Article  Google Scholar 

  93. Fluetsch, A. et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).

    ADS  Google Scholar 

  94. Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe. Astrophys. J. 905, 86 (2020).

    Article  ADS  Google Scholar 

  95. Ginolfi, M. et al. The ALPINE-ALMA [C II] survey: star-formation-driven outflows and circumgalactic enrichment in the early Universe. Astron. Astrophys. 633, A90 (2020).

    Article  Google Scholar 

  96. Birkin, J. et al. The ALMA-CRISTAL survey: weak evidence for star-formation driven outflows in z 5 main-sequence galaxies. Astrophys. J. 985, 243 (2025).

    Article  ADS  Google Scholar 

  97. Parlanti, E. et al. GA-NIFS: multi-phase analysis of a star-forming galaxy at z 5.5. Astron. Astrophys. 696, 6 (2025).

    Article  Google Scholar 

  98. Boquien, M. et al. Python Code Investigating GALaxy Emission (CIGALE). Astron. Astrophys. 622, A103 (2019).

    Article  Google Scholar 

  99. Faisst, A. et al. The ALPINE-CRISTAL-JWST Survey: JWST/IFU optical observations for 18 main-sequence galaxies at z = 4–6. Preprint at https://arxiv.org/abs/2510.16111 (2025).

  100. Fujimoto, S. et al. The ALPINE-CRISTAL-JWST Survey: NIRSpec IFU data processing and spatially-resolved views of chemical enrichment in normal galaxies at z = 4–6. Preprint at https://arxiv.org/abs/2510.16116 (2025).

Download references

Acknowledgements

We thank the Lorentz Center for hosting the Synergistic ALMA+JWST View of the Early Universe workshop, where we had the opportunity to discuss the progress and main results that ALMA and JWST have produced in the study of the early Universe, which serve as the basis for this Review. We would also like to thank all the workshop participants, whose contributions during the small-group and plenary discussions form the foundation of this Review. We are grateful to the anonymous referees for their insightful and constructive comments, which greatly improved the clarity and overall quality of the manuscript. We thank S. Schouws for providing the data shown in Fig. 2. R.H.-C. thanks the Max Planck Society for support under the Partner Group project ‘The Baryon Cycle in Galaxies’ between the Max Planck Institute for Extraterrestrial Physics and the University of Concepción. R.H.-C. also acknowledges financial support from ANID–MILENIO–NCN2024112 and ANID BASAL FB210003. N.M.F.S. acknowledges funding by the European Union (ERC Advanced Grant GALPHYS, 101055023). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. L.V. acknowledges support from the INAF Minigrant ‘RISE: Resolving the ISM and Star Formation in the Epoch of Reionization’ (Ob. Fu. 1.05.24.07.01).

Author information

Authors and Affiliations

Authors

Contributions

R.H.-C., N.M.F.S., L.V., R.B. and J.D.S. organized the Lorentz Workshop Synergistic ALMA+JWST View of the Early Universe, which led to this Review and provided the basis for its content. They wrote the text, R.H.-C. created the figures and L.V. provided the SERRA simulations shown in Fig. 3. All authors participated in the discussion of the results and contributed to revising the manuscript.

Corresponding author

Correspondence to Rodrigo Herrera-Camus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Joris Witstok and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Camus, R., Förster Schreiber, N.M., Vallini, L. et al. The early Universe with JWST and ALMA. Nat Astron 10, 34–41 (2026). https://doi.org/10.1038/s41550-025-02726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02726-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing