Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dense web of neutral gas in a galaxy proto-cluster post-reionization

Abstract

Galaxy clusters are the most massive, gravitationally bound structures in the Universe. They emerged through hierarchical structure formation of large-scale dark matter and baryon overdensities. Early galaxy ‘proto-clusters’ are believed to have substantially contributed to the cosmic star-formation rate density and served as ‘hotspots’ for the reionization of the intergalactic medium. Our understanding of the formation of these structures at the earliest cosmic epochs is, however, limited to sparse observations of their galaxy members or is based on phenomenological models and cosmological simulations. Here we report the detection of a large and coherent structure of neutral atomic hydrogen gas (H i) extending from a galaxy proto-cluster at redshift z = 5.4, one billion years after the Big Bang. The presence of this H i gas is revealed by strong damped Lyman-α absorption features observed in several background-galaxy spectra. Although the sight lines overall probe a large range in H i column densities, NHI = 1020 cm−2 to 1023.5 cm−2, they are similar across nearby sight lines, demonstrating that they probe the same dense neutral gas. This observation of a dense large-scale overdensity of cold neutral gas challenges current cosmological simulations and has strong implications for the reionization topology of the Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JWST/NIRSpec prism spectra of the 12 galaxies with apparent strong DLAs, in close on-sky proximity to the massive galaxy proto-cluster at redshift z = 5.387.
Fig. 2: Spatial and redshift distribution of the galaxy proto-cluster members and the background galaxies with strong DLAs.
Fig. 3: Simulated density maps of H i column density NHI for a proto-cluster with halo mass Mh,200 = 5.5 × 1012M at z = 5.53.

Similar content being viewed by others

Data availability

The JWST imaging and spectroscopic data are publicly available via the JWST MAST archive at https://mast.stsci.edu. The relevant programme and source IDs for each target are provided in Table 1. The reduced spectroscopic data are all available via DJA at https://dawn-cph.github.io/dja/. Version 3 was used for this work.

Code availability

The data have been processed using the following public software codes: grizli v.1.9.1160 and MsaExp v.0.6.1732.

References

  1. Wolfe, A. M., Gawiser, E. & Prochaska, J. X. Damped Lyα systems. Annu. Rev. Astron. Astrophys. 43, 861–918 (2005).

    Article  ADS  Google Scholar 

  2. Prochaska, J. X. & Wolfe, A. M. On the (non)evolution of H i gas in galaxies over cosmic time. Astrophys. J. 696, 1543–1547 (2009).

    Article  ADS  Google Scholar 

  3. Noterdaeme, P. et al. Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9. Astron. Astrophys. 547, L1 (2012).

    Article  ADS  Google Scholar 

  4. Fynbo, J. P. U. et al. Low-resolution spectroscopy of gamma-ray burst optical afterglows: biases in the Swift sample and characterization of the absorbers. Astrophys. J. Suppl. Ser. 185, 526–573 (2009).

    Article  ADS  Google Scholar 

  5. Tanvir, N. R. et al. The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Mon. Not. R. Astron. Soc. 483, 5380–5408 (2019).

    Article  ADS  Google Scholar 

  6. Heintz, K. E. et al. The cosmic buildup of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3. Astron. Astrophys. 679, A91 (2023).

    Article  Google Scholar 

  7. Heintz, K. E. et al. Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11. Science 384, 890–894 (2024).

    Article  ADS  Google Scholar 

  8. Heintz, K. E. et al. The JWST-PRIMAL archival survey: a JWST/NIRSpec reference sample for the physical properties and Lyman-α absorption and emission of ~600 galaxies at z = 5.0–13.4. Astron. Astrophys. 693, A60 (2025).

    Article  Google Scholar 

  9. Terp, C. et al. Uncovering the physical origin of the prominent Lyman-α emission and absorption in GS9422 at z = 5.943. Astron. Astrophys. 690, A70 (2024).

    Article  Google Scholar 

  10. Helton, J. M. et al. The JWST Advanced Deep Extragalactic Survey: discovery of an extreme galaxy overdensity at z = 5.4 with JWST/NIRCam in GOODS-S. Astrophys. J. 962, 124 (2024).

    Article  ADS  Google Scholar 

  11. Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).

    Article  ADS  Google Scholar 

  12. Tepper-García, T. Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt-Hjerting function. Mon. Not. R. Astron. Soc. 369, 2025–2035 (2006).

    Article  ADS  Google Scholar 

  13. Bosman, S. E. I. et al. Hydrogen reionization ends by z = 5.3: Lyman-α optical depth measured by the XQR-30 sample. Mon. Not. R. Astron. Soc. 514, 55–76 (2022).

    Article  ADS  Google Scholar 

  14. Bennett, J. S. & Sijacki, D. Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium. Mon. Not. R. Astron. Soc. 499, 597–615 (2020).

    Article  ADS  Google Scholar 

  15. Rennehan, D. The Manhattan Suite: accelerated galaxy evolution in the early Universe. Astrophys. J. 975, 114 (2024).

    Article  ADS  Google Scholar 

  16. Keating, L. C. et al. JWST observations of galaxy-damping wings during reionization interpreted with cosmological simulations. Mon. Not. R. Astron. Soc. 532, 1646–1658 (2024).

    Article  ADS  Google Scholar 

  17. Finlator, K., Keating, L., Oppenheimer, B. D., Davé, R. & Zackrisson, E. Reionization in technicolor. Mon. Not. R. Astron. Soc. 480, 2628–2649 (2018).

    Article  ADS  Google Scholar 

  18. Witten, C. et al. Deciphering Lyman-α emission deep into the epoch of reionization. Nat. Astron. 8, 384–396 (2024).

    Article  ADS  Google Scholar 

  19. Kashino, D., Lilly, S. J., Shibuya, T., Ouchi, M. & Kashikawa, N. Evidence for a highly opaque large-scale galaxy void at the end of reionization. Astrophys. J. 888, 6 (2020).

    Article  ADS  Google Scholar 

  20. Angelinelli, M., Ettori, S., Dolag, K., Vazza, F. & Ragagnin, A. Redshift evolution of the baryon and gas fraction in simulated groups and clusters of galaxies. Astron. Astrophys. 675, A188 (2023).

    Article  ADS  Google Scholar 

  21. Daddi, E. et al. Evidence for cold-stream to hot-accretion transition as traced by Lyα emission from groups and clusters at 2 < z < 3.3. Astrophys. J. Lett. 926, L21 (2022).

    Article  ADS  Google Scholar 

  22. Rohr, E. et al. The cooler past of the intracluster medium in TNG-cluster. Mon. Not. R. Astron. Soc. 536, 1226–1250 (2025).

    Article  ADS  Google Scholar 

  23. Daddi, E. et al. Three Lyman-α-emitting filaments converging to a massive galaxy group at z = 2.91: discussing the case for cold gas infall. Astron. Astrophys. 649, A78 (2021).

    Article  Google Scholar 

  24. Bacon, R. et al. The MUSE extremely deep field: the cosmic web in emission at high redshift. Astron. Astrophys. 647, A107 (2021).

    Article  Google Scholar 

  25. Leonova, E. et al. The prevalence of galaxy overdensities around UV-luminous Lyman-α emitters in the epoch of reionization. Mon. Not. R. Astron. Soc. 515, 5790–5801 (2022).

    Article  ADS  Google Scholar 

  26. Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  27. Astropy Collaborationet al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  28. Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble ultra deep field: redshifts and line fluxes of distant galaxies from the deepest JWST cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).

    Article  Google Scholar 

  29. Barrufet, L. et al. Quiescent or dusty? Unveiling the nature of extremely red galaxies at z > 3. Mon. Not. R. Astron. Soc. 537, 3453–3469 (2025).

    Article  ADS  Google Scholar 

  30. Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  31. Jakobsen, P. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article  Google Scholar 

  32. Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://doi.org/10.5281/zenodo.7299500 (2023).

  33. Schaerer, D., Marques-Chaves, R., Xiao, M. & Korber, D. Discovery of a new N-emitter in the epoch of reionization. Astron. Astrophys. 687, L11 (2024).

    Article  ADS  Google Scholar 

  34. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article  ADS  Google Scholar 

  35. Chiang, Y.-K., Overzier, R. A., Gebhardt, K. & Henriques, B. Galaxy protoclusters as drivers of cosmic star formation history in the first 2 Gyr. Astrophys. J. Lett. 844, L23 (2017).

    Article  ADS  Google Scholar 

  36. Miralda-Escudé, J. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998).

    Article  ADS  Google Scholar 

  37. McQuinn, M., Lidz, A., Zaldarriaga, M., Hernquist, L. & Dutta, S. Probing the neutral fraction of the IGM with GRBs during the epoch of reionization. Mon. Not. R. Astron. Soc. 388, 1101–1110 (2008).

    ADS  Google Scholar 

  38. McGreer, I. D., Mesinger, A. & D’Odorico, V. Model-independent evidence in favour of an end to reionization by z ≈ 6. Mon. Not. R. Astron. Soc. 447, 499–505 (2015).

    Article  ADS  Google Scholar 

  39. Fan, X., Bañados, E. & Simcoe, R. A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61, 373–426 (2023).

    Article  ADS  Google Scholar 

  40. Totani, T. et al. Implications for cosmic reionization from the optical afterglow spectrum of the gamma-ray burst 050904 at z = 6.3. Publ. Astron. Soc. Jpn 58, 485–498 (2006).

    Article  ADS  Google Scholar 

  41. Umeda, H. et al. JWST measurements of neutral hydrogen fractions and ionized bubble sizes at z = 7–12 obtained with Lyα damping wing absorptions in 27 bright continuum galaxies. Astrophys. J. 971, 124 (2024).

    Article  ADS  Google Scholar 

  42. D’Eugenio, F. et al. JADES: carbon enrichment 350 Myr after the Big Bang. Astron. Astrophys. 689, A152 (2024).

    Article  Google Scholar 

  43. Hainline, K. N. et al. Searching for emission lines at z > 11: the role of damped Lyα and hints about the escape of ionizing photons. Astrophys. J. 976, 160 (2024).

    Article  ADS  Google Scholar 

  44. Carniani, S. et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633, 318–322 (2024).

    Article  ADS  Google Scholar 

  45. Witstok, J. et al. Witnessing the onset of reionization through Lyman-α emission at redshift 13. Nature 639, 897–901 (2025).

    Article  ADS  Google Scholar 

  46. Heintz, K. E. et al. Dissecting the massive pristine, neutral gas reservoir of a remarkably bright galaxy at z = 14.179. Astrophys. J. Lett. 987, L2 (2025).

    Article  ADS  Google Scholar 

  47. Larson, R. L. et al. Spectral templates optimal for selecting galaxies at z > 8 with the JWST. Astrophys. J. 958, 141 (2023).

    Article  ADS  Google Scholar 

  48. Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article  ADS  Google Scholar 

  49. Witstok, J. et al. On the origins of oxygen: ALMA and JWST characterise the multi-phase, metal-enriched, star-bursting medium within a ‘normal’ z > 11 galaxy. Preprint at https://arxiv.org/abs/2507.22888 (2025).

  50. Hu, W. et al. CLASSY VII Lyα profiles: the structure and kinematics of neutral gas and implications for LyC escape in reionization-era analogs. Astrophys. J. 956, 39 (2023).

    Article  ADS  Google Scholar 

  51. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  52. Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891–913 (2019).

    Article  MathSciNet  Google Scholar 

  53. Cameron, A. J. et al. Nebular dominated galaxies: insights into the stellar initial mass function at high redshift. Mon. Not. R. Astron. Soc. 534, 523–543 (2024).

    Article  ADS  Google Scholar 

  54. Katz, H. et al. 21 Balmer jump street: the nebular continuum at high redshift and implications for the bright galaxy problem, UV continuum slopes, and early stellar populations. Open J. Astrophys. 8, 104 (2025).

    Article  ADS  Google Scholar 

  55. Chen, Z. et al. JWST spectroscopy of z ~ 5–8 UV-selected galaxies: new constraints on the evolution of the Ly α escape fraction in the reionization era. Mon. Not. R. Astron. Soc. 528, 7052–7075 (2024).

    Article  ADS  Google Scholar 

  56. Henden, N. A., Puchwein, E., Shen, S. & Sijacki, D. The FABLE simulations: a feedback model for galaxies, groups, and clusters. Mon. Not. R. Astron. Soc. 479, 5385–5412 (2018).

    Article  ADS  Google Scholar 

  57. Angulo, R. E. et al. Scaling relations for galaxy clusters in the Millennium-XXL simulation. Mon. Not. R. Astron. Soc. 426, 2046–2062 (2012).

    Article  ADS  Google Scholar 

  58. Bird, S. et al. Moving-mesh cosmology: properties of neutral hydrogen in absorption. Mon. Not. R. Astron. Soc. 429, 3341–3352 (2013).

    Article  ADS  Google Scholar 

  59. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  60. Brammer, G. grizli. Zenodo https://doi.org/10.5281/zenodo.1146904 (2023).

Download references

Acknowledgements

This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (Contract No. MB22.00072). The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation (Grant No. DNRF140). The data products presented herein were retrieved from the DJA, which is an initiative of the Cosmic Dawn Center. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. J.S.B. acknowledges support from the Simons Collaboration on Learning the Universe. J.S.B.’s simulations used resources from the Cambridge Service for Data Driven Discovery operated by the University of Cambridge Research Computing Service (www.csd3.cam.ac.uk), provided by Dell EMC and Intel using tier 2 funding from the Engineering and Physical Sciences Research Council (Capital Grant No. EP/P020259/1). K.F. gratefully acknowledges support from the National Science Foundation (Award No. 2006550). M.J.H. is fellow of the Knut & Alice Wallenberg Foundation. D.S. acknowledges support from the Science and Technology Facilities Council. U.S.K. was partially funded by the Summer Undergraduate Research Fellowships programme at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

K.E.H. wrote the paper, led the analysis, and produced Figs. 1 and 2 and Supplementary Figs. 1, 2, 4 and 5. G.B.B. reduced and extracted the photometric and spectroscopic data. R.S. and J.W. identified the first evidence for strong DLA in the target galaxies. P.A.O. led the FRESCO observations and analysis of the galaxy proto-cluster members. C.L.P., S.V., C.T. and U.S.K. performed the Lyα modelling of the spectra. C.L.P. produced Supplementary Fig. 3. J.S.B. and D.R. performed the simulations and extracted the relevant data. J.S.B. produced Fig. 3, and D.R. produced Supplementary Fig. 6. A.S. did the statistical clustering analysis and produced Extended Data Fig. 1. All authors contributed to the text and interpretations of the results.

Corresponding author

Correspondence to Kasper E. Heintz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Relative line-of-sight HI column densities as a function of projected distance at z=5.4 for all background-galaxy pairs.

The right hand panel indicates the CDF of N_HI-ratios. The dashed line indicates the median of the observed distribution of N_HI ratio for galaxies with projected distances between 100 kpc and 1000 kpc. Error bars denote the quadratic uncertainty on the column density ratio. The galaxies associated with the smallest on-sky projected distance display similar column-densities. Objects with projected distance d < 100, d > 100 kpc are indicated in black and blue respectively.

Extended Data Table 1 Bayesian model statistics for the DLA sample

Supplementary information

Supplementary Information

Supplementary Figs 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heintz, K.E., Bennett, J.S., Oesch, P.A. et al. A dense web of neutral gas in a galaxy proto-cluster post-reionization. Nat Astron (2026). https://doi.org/10.1038/s41550-025-02745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41550-025-02745-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing