Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An interstellar energetic and non-aqueous pathway to peptide formation

Abstract

The origin of the molecular building blocks of life is a central question in science. A few α-amino acids, such as glycine, the simplest proteinogenic amino acid, have been detected in meteorites and comets, indicating an extraterrestrial origin for some prebiotic molecules. However, the formation of peptides, short chains of α-amino acids linked by peptide bonds, has remained unresolved under astrophysical conditions. Here we show that the building blocks of proteins can form in interstellar ice analogues exposed to ionizing radiation without the presence of liquid water. Using isotopically labelled glycine irradiated with protons at cryogenic temperatures, we detect the formation of glycylglycine, the simplest dipeptide, along with deuterated and undeuterated water as by-products. The formation of peptide bonds is confirmed by infrared spectroscopy and high-resolution mass spectrometry, which also reveal the production of other complex organic species. These findings demonstrate a non-aqueous route to peptide formation under space-like conditions and suggest that such molecules could form in the cold interstellar medium and be incorporated into forming planetary systems. Our results challenge aqueous-centric models of early biochemical evolution and broaden potential settings for the origins of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peptide formation induced by energetic processing in the ISM.
Fig. 2: FTIR spectra of the three glycine isotopologues and their changes during 10-keV proton exposure.
Fig. 3: QMS detections of H2O, HDO and D2O with the corresponding FTIR spectra during TPD measurements of all three glycine isotopologues after proton exposure.
Fig. 4: Number of D2O and H2O molecules normalized to the final irradiation yield plotted as a function of the fluence of proton bombardment, showing the rate of formation.
Fig. 5: FTIR spectra of the residue obtained after processing glycine with 1-MeV protons with a fluence of 1.24 × 1015 H+ cm−2.
Fig. 6: Selected ex situ ESI-MS data on the newly detected molecules with some of the larger masses labelled.

Similar content being viewed by others

Data availability

Data for this project are available via Zenodo at https://doi.org/10.5281/zenodo.17814722 (ref. 53).

References

  1. Barone, V. & Puzzarini, C. Toward accurate formation routes of complex organic molecules in the interstellar medium: the paradigmatic cases of acrylonitrile and cyanomethanimine. Front. Astron. Space Sci. 8, 255 (2022).

    Article  ADS  Google Scholar 

  2. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  Google Scholar 

  3. Sephton, M. A. Organic matter in carbonaceous meteorites: past, present and future research. Philos. Trans. R. Soc. Lond. Ser. A 363, 2729–2742 (2005).

    ADS  Google Scholar 

  4. Hadraoui, K. et al. Distributed glycine in comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 630, A32 (2019).

    Article  Google Scholar 

  5. Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).

    Article  Google Scholar 

  6. Elsila, J. E., Glavin, D. P. & Dworkin, J. P. Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 1323–1330 (2009).

    Article  ADS  Google Scholar 

  7. Sandford, S. A. et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314, 1720–1724 (2006).

    Article  ADS  Google Scholar 

  8. Ioppolo, S. et al. A non-energetic mechanism for glycine formation in the interstellar medium. Nat. Astron. 5, 197–205 (2021).

    Article  ADS  Google Scholar 

  9. Maté, B., Tanarro, I., Escribano, R., Moreno Alba, M. & Herrero, V. Stability of extraterrestrial glycine under energetic particle radiation estimated from 2 keV electron bombardment experiments. Astrophys. J. 806, 151 (2015).

    Article  ADS  Google Scholar 

  10. Maté, B. et al. Stability of carbonaceous dust analogues and glycine under UV irradiation and electron bombardment. Faraday Discuss. 168, 267 (2014).

    Article  ADS  Google Scholar 

  11. Pilling, S. et al. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions. Astrobiology 13, 79–91 (2013).

    Article  ADS  Google Scholar 

  12. Portugal, W., Pilling, S., Boduch, P., Rothard, H. & Andrade, D. P. P. Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Mon. Not. R. Astron. Soc. 441, 3209–3225 (2014).

    Article  ADS  Google Scholar 

  13. da Costa, C. A. P., Souza-Corrêa, J. A. & da Silveira, E. F. Infrared analysis of glycine dissociation by MeV ions and keV electrons. Mon. Not. R. Astron. Soc. 502, 2105–2119 (2021).

    Article  ADS  Google Scholar 

  14. Martins, Z., Price, M., Goldman, N., Sephton, M. & Burchell, M. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat. Geosci. 6, 1045–1049 (2013).

    Article  ADS  Google Scholar 

  15. Singh, S. V. et al. Shock processing of amino acids leading to complex structures–implications to the origin of life. Molecules 25, 5634 (2020).

    Article  Google Scholar 

  16. Munoz-Caro, G. et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403–406 (2002).

    Article  ADS  Google Scholar 

  17. Bernstein, M., Dworkin, J., Sandford, S., Cooper, G. & Allamandola, L. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401–403 (2002).

    Article  ADS  Google Scholar 

  18. Krasnokutski, S. A., Chuang, K.-J., Jäger, C., Ueberschaar, N. & Henning, T. A pathway to peptides in space through the condensation of atomic carbon. Nat. Astron. 6, 381–386 (2022).

    Article  ADS  Google Scholar 

  19. Snow, T. P. & Witt, A. N. The interstellar carbon budget and the role of carbon in dust and large molecules. Science 270, 1455–1460 (1995).

    Article  ADS  Google Scholar 

  20. Moreno, A. & Bonduelle, C. New insights on the chemical origin of life: the role of aqueous polymerization of N-carboxyanhydrides (NCA). ChemPlusChem 89, e202300492 (2024).

    Article  Google Scholar 

  21. Maté, B., Rodriguez, Y., Gálvez, O., Tanarro, I. & Escribano, R. An infrared study of solid glycine in environments of astrophysical relevance. Phys. Chem. Chem. Phys. 13, 12268–12276 (2011).

    Article  Google Scholar 

  22. Kaiser, R. I., Stockton, A. M., Kim, Y. S., Jensen, E. C. & Mathies, R. A. On the formation of dipeptides in interstellar model ices. Astrophys. J. 765, 111 (2013).

    Article  ADS  Google Scholar 

  23. Gerakines, P. A., Hudson, R. L., Moore, M. H. & Bell, J.-L. In situ measurements of the radiation stability of amino acids at 15–140 K. Icarus 220, 647–659 (2012).

    Article  ADS  Google Scholar 

  24. Jheeta, S., Ptasinska, S., Sivaraman, B. & Mason, N. The irradiation of 1:1 mixture of ammonia:carbon dioxide ice at 30 K using 1 keV electrons. Chem. Phys. Lett. 543, 208–212 (2012).

    Article  ADS  Google Scholar 

  25. Park, K., Kim, Y. & Lee, K. J. Analysis of deuterated water contents using FTIR bending motion. J. Radioanal. Nucl. Chem. 322, 487–493 (2019).

    Article  Google Scholar 

  26. Palumbo, M., Baratta, G., Leto, G. & Strazzulla, G. H bonds in astrophysical ices. J. Mol. Struct. 972, 64–67 (2010).

    Article  ADS  Google Scholar 

  27. Escribano, B. et al. Interstellar water ice analogue properties as a function of temperature: updated density, porosity, and infrared band strength. Astron. Astrophys. 699, A79 (2025).

    Article  Google Scholar 

  28. Urso, R. G., Palumbo, M. E., Baratta, G. A., Scirè, C. & Strazzulla, G. Solid deuterated water in space: detection constraints from laboratory experiments. Mon. Not. R. Astron. Soc. 479, 130–140 (2018).

    ADS  Google Scholar 

  29. Sznajder, M. Solar wind H+ fluxes at 1 AU for solar cycles 23 and 24. Adv. Space Res. 71, 4923–4957 (2023).

    Article  ADS  Google Scholar 

  30. Morar, M., Hoskins, A. A., Stubbe, J. & Ealick, S. E. Formylglycinamide ribonucleotide amidotransferase from Thermotoga maritima: structural insights into complex formation. Biochemistry 47, 7816–7830 (2008).

    Article  Google Scholar 

  31. Pedley, A. M. & Benkovic, S. J. A new view into the regulation of purine metabolism: the purinosome. Trends Biochem. Sci. 42, 141–154 (2017).

    Article  Google Scholar 

  32. Bennett, C. J., Pirim, C. & Orlando, T. M. Space-weathering of Solar System bodies: a laboratory perspective. Chem. Rev. 113, 9086–9150 (2013).

    Article  Google Scholar 

  33. Esmaili, S., Bass, A., Cloutier, P., Sanche, L. & Huels, M. Glycine formation in CO2:CH4:NH3 ices induced by 0–70 eV electrons. J. Chem. Phys. 148, 164702 (2018).

    Article  ADS  Google Scholar 

  34. Gorlero, M. et al. Ser-His catalyses the formation of peptides and PNAs. FEBS Lett. 583, 153–156 (2009).

    Article  Google Scholar 

  35. Prakash Kulkarni, R. S. & Uversky, V. N. Intrinsic disorder, extraterrestrial peptides, and prebiotic life on the Earth. J. Biomol. Struct. Dyn. 41, 5481–5485 (2023).

    Article  Google Scholar 

  36. Childers, W. S., Mehta, A. K., Ni, R., Taylor, J. V. & Lynn, D. G. Peptides organized as bilayer membranes. Angew. Chem. Int. Ed. 49, 4104–4107 (2010).

    Article  Google Scholar 

  37. Fried, S. D., Fujishima, K., Makarov, M., Cherepashuk, I. & Hlouchova, K. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. J. R. Soc. Interface 19, 20210641 (2022).

    Article  Google Scholar 

  38. Rácz, R. et al. AQUILA: a laboratory facility for the irradiation of astrochemical ice analogs by keV ions. Rev. Sci. Instrum. 95, 095105 (2024).

    Article  ADS  Google Scholar 

  39. Biri, S. et al. The Atomki Accelerator Centre. Eur. Phys. J. Plus 136, 247 (2021).

    Article  ADS  Google Scholar 

  40. Rácz, R., Biri, S., Juhász, Z., Sulik, B. & Pálinkás, J. Molecular and negative ion production by a standard electron cyclotron resonance ion source. Rev. Sci. Instrum. 83, 02A313 (2012).

    Article  Google Scholar 

  41. Herczku, P. et al. The Ice Chamber for Astrophysics–Astrochemistry (ICA): a new experimental facility for ion impact studies of astrophysical ice analogs. Rev. Sci. Instrum. 92, 084501 (2021).

    Article  ADS  Google Scholar 

  42. Mifsud, D. V. et al. Electron irradiation and thermal chemistry studies of interstellar and planetary ice analogues at the ICA astrochemistry facility. Eur. Phys. J. D 75, 182 (2021).

    Article  ADS  Google Scholar 

  43. Rajta, I. et al. Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary. Nucl. Instrum. Methods Phys. Res. Sect. A 880, 125–130 (2018).

    Article  ADS  Google Scholar 

  44. Neese, F. The ORCA program system. WIRES Comput. Mol. Sci. 2, 73–78 (2012).

    Article  Google Scholar 

  45. Neese, F. Software update: the ORCA program system, version 5.0. WIRES Comput. Mol. Sci. 12, e1606 (2022).

    Article  Google Scholar 

  46. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  47. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  48. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  Google Scholar 

  49. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  Google Scholar 

  50. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  ADS  Google Scholar 

  51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

  52. Kashinski, D. et al. Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J. Phys. Chem. A 121, 2265–2273 (2017).

    Article  Google Scholar 

  53. Hopkinson, A. T. et al. Data for ‘An interstellar energetic and non-aqueous pathway to peptide formation’. Zenodo https://doi.org/10.5281/zenodo.17814721 (2026).

Download references

Acknowledgements

Support from the Danish National Research Foundation through the Centre of Excellence InterCat (Grant Agreement No. DNRF150) is acknowledged by A.T.H., A.M.W., J.P., A.T.M., L.H. and S.I. The research was supported by the Europlanet 2024 RI, which was funded by the European Union Horizon 2020 Research Innovation Programme (Grant Agreement No. 871149) and is acknowledged by A.T.H. and N.J.M. The main components of the ICA set-up were purchased using funds obtained from the Royal Society through Grant Nos. UF130409, RGF/EA/180306 and URF/R/191018 and are acknowledged by S.I. Further developments of the installation were supported in part by the Eötvös Loránd Research Network (Grant Nos. ELKH IF-2/2019 and ELKH IF-5/2020) and are acknowledged by R.R., P.H., G.L., S.B., Z.J., D.V.M., B.S., R.W.M. and N.J.M. This work has also received support from the European Union and the State of Hungary, cofinanced by the European Regional Development Fund (Grant No. GINOP-2.3.3-15-2016-00005). Support has also been received from the Research, Development, and Innovation Fund of Hungary (Grant Nos. K128621 and ADVANCED-151196). These grants are acknowledged by R.R., P.H., G.L., S.B., Z.J., D.V.M., B.S., R.W.M. and N.J.M. This paper is also based on work from the COST Actions CA20129 MultIChem and CA22133 PLANETS, which are supported by COST (European Cooperation in Science and Technology) and are acknowledged by R.R., P.H., G.L., S.B., Z.J., D.V.M., B.S., R.W.M. and N.J.M. Z.J. is grateful for the support of the Hungarian Academy of Sciences through the János Bolyai Research Scholarship. R.W.M. is the grateful recipient of an honorary visiting scholar post at Queen’s University Belfast.

Author information

Authors and Affiliations

Authors

Contributions

A.T.H. conceived the experiments with input from S.I. and L.H. A.T.H., A.M.W. and A.T.M. conducted the IR and QMS experiments, and A.T.H. analysed the results with input from S.I. and L.H. R.R., P.H., G.L., S.B., Z.J., D.V.M., B.S., R.W.M. and N.J.M. enabled the irradiation experiments at HUN-REN Atomki. C.S. conducted the ex situ ESI-MS experiments, and A.T.H. and C.S. analysed the results. J.P. conducted the theoretical calculations, and A.T.H. and J.P. analysed the results. A.T.H., C.S., J.P. and S.I. wrote the draft paper. All authors reviewed the paper.

Corresponding authors

Correspondence to Alfred Thomas Hopkinson or Sergio Ioppolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Guillermo Munoz Caro and Sergio Pilling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion relating to the main paper finding. Contains Supplementary Figs. 1–7 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkinson, A.T., Wilson, A.M., Pitfield, J. et al. An interstellar energetic and non-aqueous pathway to peptide formation. Nat Astron (2026). https://doi.org/10.1038/s41550-025-02765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41550-025-02765-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing