Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inference on inner galaxy structure via gravitational waves from supermassive binaries

Abstract

The detection of a stochastic gravitational wave background by pulsar-timing arrays indicates the presence of a population of supermassive black hole binaries. Although the observed spectrum generally matches predictions for orbital evolution driven by gravitational-wave emission in circular orbits, there is a preference for a spectral turnover at the lowest observed frequencies, which may point to substantial hardening during a transition from early environmental influences to later stages dominated by emission. In the vicinity of these binaries, the ejection of stars or dark matter particles through gravitational three-body slingshots efficiently extracts orbital energy, leading to a low-frequency turnover in the spectrum. Here we model how the gravitational-wave spectrum depends on the initial inner galactic profile before scouring by binary ejections while accounting for a range of initial binary eccentricities. By analysing the NANOGrav 15-year data, we find that a parsec-scale galactic-centre density of around 106M pc3 is favoured across most of the parameter space, thus shedding light on the environmental effects that shape black hole evolution and the combined matter density near galaxy centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrative SGWB spectra from a simplified SMBHB population.
Fig. 2: Posterior constraints on eccentricity and environmental parameters.
Fig. 3: Constraints and corresponding SGWB spectra for fixed initial eccentricities.
Fig. 4: Posterior constraints from alternative eccentricity and density-profile parameterizations.

Data availability

The NANOGrav 15-year dataset is described in and available through ref. 7.

Code availability

All methods required to evaluate the conclusions in this paper are provided in the main text, Methods and Supplementary Information. The holodeck and PTArcade codes used in this work are publicly available via GitHub at https://github.com/nanograv/holodeck and https://github.com/andrea-mitridate/PTArcade, respectively. The code supporting the findings of this study is available via GitHub at https://github.com/XueXiao-Physics/NG15_Galactic_Tomography.

References

  1. Arzoumanian, Z. et al. The NANOGrav 12.5 yr data set: search for an isotropic stochastic gravitational-wave background. Astrophys. J. Lett. 905, 34 (2020).

    Article  ADS  Google Scholar 

  2. Agazie, G. et al. The NANOGrav 15 yr data set: evidence for a gravitational-wave background. Astrophys. J. Lett. 951, 8 (2023).

    Article  ADS  Google Scholar 

  3. Antoniadis, J. et al. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals. Astron. Astrophys. 678, 50 (2023).

    Article  Google Scholar 

  4. Reardon, D. J. et al. Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 951, 6 (2023).

    Article  ADS  Google Scholar 

  5. Xu, H. et al. Searching for the nano-hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 23, 075024 (2023).

    Article  ADS  Google Scholar 

  6. Hellings, R. W. & Downs, G. S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, 39–42 (1983).

    Article  ADS  Google Scholar 

  7. Agazie, G. et al. The NANOGrav 15 yr data set: constraints on supermassive black hole binaries from the gravitational-wave background. Astrophys. J. Lett. 952, 37 (2023).

    Article  ADS  Google Scholar 

  8. Antoniadis, J. et al. The second data release from the European Pulsar Timing Array. IV. Implications for massive black holes, dark matter, and the early Universe. Astron. Astrophys. 685, 94 (2024).

    Article  Google Scholar 

  9. Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  10. Milosavljevic, M. & Merritt, D. The final parsec problem. AIP Conf. Proc. 686, 201–210 (2003).

    Article  ADS  Google Scholar 

  11. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article  ADS  Google Scholar 

  12. Gondolo, P. & Silk, J. Dark matter annihilation at the Galactic Center. Phys. Rev. Lett. 83, 1719–1722 (1999).

    Article  ADS  Google Scholar 

  13. Genzel, R., Eisenhauer, F. & Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010).

    Article  ADS  Google Scholar 

  14. Quinlan, G. D. The dynamical evolution of massive black hole binaries. I. Hardening in a fixed stellar background. New Astron. 1, 35–56 (1996).

    Article  ADS  Google Scholar 

  15. Chandrasekhar, S. Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  16. Milosavljevic, M. & Merritt, D. Formation of galactic nuclei. Astrophys. J. 563, 34–62 (2001).

    Article  ADS  Google Scholar 

  17. Merritt, D. & Milosavljevic, M. Dynamics of dark matter cusps. In Proc. 4th International Heidelberg Conference on Dark Matter in Astro and Particle Physics (eds Klapdor-Kleingrothaus, H. V. & Viollier, R. D.) 79–89 (Springer, 2002).

  18. Sesana, A. & Khan, F. M. Scattering experiments meet N-body. I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Mon. Not. R. Astron. Soc. 454, 66–70 (2015).

    Article  ADS  Google Scholar 

  19. Frank, J. & Rees, M. J. Effects of massive central black holes on dense stellar systems. Mon. Not. R. Astron. Soc. 176, 633 (1976).

    Article  ADS  Google Scholar 

  20. Enoki, M. & Nagashima, M. The effect of orbital eccentricity on gravitational wave background radiation from cosmological binaries. Prog. Theor. Phys. 117, 241 (2007).

    Article  ADS  Google Scholar 

  21. Khan, F. M., Just, A. & Merritt, D. Efficient merger of binary supermassive black holes in merging galaxies. Astrophys. J. 732, 89 (2011).

    Article  ADS  Google Scholar 

  22. Preto, M., Berentzen, I., Berczik, P. & Spurzem, R. Fast coalescence of massive black hole binaries from mergers of galactic nuclei: implications for low-frequency gravitational-wave astrophysics. Astrophys. J. Lett. 732, 26 (2011).

    Article  ADS  Google Scholar 

  23. Khan, F. M. et al. Mergers of unequal mass galaxies: supermassive black hole binary evolution and structure of merger remnants. Astrophys. J. 749, 147 (2012).

    Article  ADS  Google Scholar 

  24. Merritt, D. & Poon, M. Y. Chaotic loss cones, black hole fueling. Astrophys. J. 606, 788–798 (2004).

    Article  ADS  Google Scholar 

  25. Merritt, D. Black holes and galaxy evolution. In Proc. XVth IAP Meeting – Dynamics of Galaxies : From the Early Universe to the Present (eds Combes, F. et al.) 221 (ASP, 2000).

  26. Antonini, F., Barausse, E. & Silk, J. The imprint of massive black-hole mergers on the correlation between nuclear star clusters and their host galaxies. Astrophys. J. Lett. 806, 8 (2015).

    Article  ADS  Google Scholar 

  27. Antonini, F., Barausse, E. & Silk, J. The coevolution of nuclear star clusters, massive black holes, and their host galaxies. Astrophys. J. 812, 72 (2015).

    Article  ADS  Google Scholar 

  28. Celoria, M., Oliveri, R., Sesana, A. & Mapelli, M. Lecture notes on black hole binary astrophysics. Preprint at http://arxiv.org/abs/1807.11489 (2018).

  29. Chen, S., Sesana, A. & Del Pozzo, W. Efficient computation of the gravitational wave spectrum emitted by eccentric massive black hole binaries in stellar environments. Mon. Not. R. Astron. Soc. 470, 1738–1749 (2017).

    Article  ADS  Google Scholar 

  30. Dehnen, W. A family of potential-density pairs for spherical galaxies and bulges. Mon. Not. R. Astron. Soc. 265, 250 (1993).

    Article  ADS  Google Scholar 

  31. Taylor, S. R., Simon, J. & Sampson, L. Constraints on the dynamical environments of supermassive black-hole binaries using pulsar-timing arrays. Phys. Rev. Lett. 118, 181102 (2017).

    Article  ADS  Google Scholar 

  32. Chen, S., Sesana, A. & Conselice, C. J. Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays. Mon. Not. R. Astron. Soc. 488, 401–418 (2019).

    Article  ADS  Google Scholar 

  33. Bi, Y.-C., Wu, Y.-M., Chen, Z.-C. & Huang, Q.-G. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. Sci. China Phys. Mech. Astron. 66, 120402 (2023).

    Article  ADS  Google Scholar 

  34. McLaughlin, D. E. Evidence in Virgo for the universal dark matter halo. Astrophys. J. Lett. 512, 9 (1999).

    Article  ADS  Google Scholar 

  35. Merritt, D. The distribution of stars and stellar remnants at the Galactic Center. Astrophys. J. 718, 739–761 (2010).

    Article  ADS  Google Scholar 

  36. Ullio, P., Zhao, H. & Kamionkowski, M. A dark matter spike at the Galactic Center? Phys. Rev. D 64, 043504 (2001).

    Article  ADS  Google Scholar 

  37. Hallinan, G. et al. The DSA-2000 – a radio survey camera. Preprint at http://arxiv.org/abs/1907.07648 (2019).

  38. Weltman, A. et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Aust. 37, 002 (2020).

    Article  ADS  Google Scholar 

  39. Vallenari, A. The future of astrometry in space. Front. Astron. Space Sci. 5, 11 (2018).

    Article  ADS  Google Scholar 

  40. Çalışkan, M. et al. Dissecting the stochastic gravitational wave background with astrometry. J. Cosmol. Astropart. Phys. 05, 030 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  41. Ayzenberg, D. et al. Fundamental physics opportunities with the next-generation Event Horizon Telescope. Living Rev. Relativ. 28, 4 (2025).

    Article  ADS  Google Scholar 

  42. D’Orazio, D. J. & Charisi, M. Observational signatures of supermassive black hole binaries. Preprint at http://arxiv.org/abs/2310.16896 (2023).

  43. Raidal, J., Urrutia, J., Vaskonen, V. & Veermäe, H. Eccentricity effects on the supermassive black hole gravitational wave background. Astron. Astrophys. 691, 212 (2024).

    Article  ADS  Google Scholar 

  44. Kelley, L. Z., Blecha, L. & Hernquist, L. Massive black hole binary mergers in dynamical galactic environments. Mon. Not. R. Astron. Soc. 464, 3131–3157 (2017).

    Article  ADS  Google Scholar 

  45. Gould, A. & Rix, H.-W. Binary black hole mergers from planet-like migrations. Astrophys. J. Lett. 532, 29 (2000).

    Article  ADS  Google Scholar 

  46. Armitage, P. J. & Natarajan, P. Accretion during the merger of supermassive black holes. Astrophys. J. Lett. 567, 9–12 (2002).

    Article  ADS  Google Scholar 

  47. Sesana, A. Self consistent model for the evolution of eccentric massive black hole binaries in stellar environments: implications for gravitational wave observations. Astrophys. J. 719, 851–864 (2010).

    Article  ADS  Google Scholar 

  48. Sampson, L., Cornish, N. J. & McWilliams, S. T. Constraining the solution to the last parsec problem with pulsar timing. Phys. Rev. D 91, 084055 (2015).

    Article  ADS  Google Scholar 

  49. Kelley, L. Z., Blecha, L., Hernquist, L., Sesana, A. & Taylor, S. R. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays. Mon. Not. R. Astron. Soc. 471, 4508–4526 (2017).

    Article  ADS  Google Scholar 

  50. Bortolas, E., Franchini, A., Bonetti, M. & Sesana, A. The competing effect of gas and stars in the evolution of massive black hole binaries. Astrophys. J. Lett. 918, 15 (2021).

    Article  ADS  Google Scholar 

  51. Aghaie, M., Armando, G., Dondarini, A. & Panci, P. Bounds on ultralight dark matter from NANOGrav. Phys. Rev. D 109, 103030 (2024).

    Article  ADS  Google Scholar 

  52. Alonso-Álvarez, G., Cline, J. M. & Dewar, C. Self-interacting dark matter solves the final parsec problem of supermassive black hole mergers. Phys. Rev. Lett. 133, 021401 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  53. Dutra, I., Natarajan, P. & Gilman, D. Self-interacting dark matter, core collapse, and the galaxy–galaxy strong-lensing discrepancy. Astrophys. J. 978, 38 (2025).

    Article  ADS  Google Scholar 

  54. Ikeda, T., Bernard, L., Cardoso, V. & Zilhão, M. Black hole binaries and light fields: gravitational molecules. Phys. Rev. D 103, 024020 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  55. Broadhurst, T., Chen, C., Liu, T. & Zheng, K.-F. Binary supermassive black holes orbiting dark matter solitons: from the dual AGN in UGC4211 to nanohertz gravitational waves. Preprint at http://arxiv.org/abs/2306.17821 (2023).

  56. Koo, H., Bak, D., Park, I., Hong, S. E. & Lee, J.-W. Final parsec problem of black hole mergers and ultralight dark matter. Phys. Lett. B 856, 138908 (2024).

    Article  MathSciNet  Google Scholar 

  57. Bromley, B. C., Sandick, P. & Shams Es Haghi, B. Supermassive black hole binaries in ultralight dark matter. Phys. Rev. D 110, 023517 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  58. Aurrekoetxea, J. C., Clough, K., Bamber, J. & Ferreira, P. G. Effect of wave dark matter on equal mass black hole mergers. Phys. Rev. Lett. 132, 211401 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  59. Aurrekoetxea, J. C., Marsden, J., Clough, K. & Ferreira, P. G. Self-interacting scalar dark matter around binary black holes. Phys. Rev. D 110, 083011 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  60. Guo, Y. et al. Ultralight boson ionization from comparable-mass binary black holes. Preprint at http://arxiv.org/abs/2509.09643 (2025).

  61. Tiede, C. & D’Orazio, D. J. Eccentric binaries in retrograde discs. Mon. Not. R. Astron. Soc. 527, 6021–6037 (2023).

    Article  ADS  Google Scholar 

  62. Dittmann, A. J., Ryan, G. & Miller, M. C. The decoupling of binaries from their circumbinary disks. Astrophys. J. Lett. 949, 30 (2023).

    Article  ADS  Google Scholar 

  63. Ghoshal, A. & Strumia, A. Probing the dark matter density with gravitational waves from super-massive binary black holes. J. Cosmol. Astropart. Phys. 02, 054 (2024).

    Article  ADS  Google Scholar 

  64. Shen, Z.-Q. et al. Dark matter spike surrounding supermassive black holes binary and the nanohertz stochastic gravitational wave background. Phys. Dark Universe 49, 102004 (2025).

    Article  Google Scholar 

  65. Hu, L., Cai, R.-G. & Wang, S.-J. Distinctive GWBs from eccentric inspiraling SMBH binaries with a DM spike. J. Cosmol. Astropart. Phys. 02, 067 (2025).

    Article  ADS  Google Scholar 

  66. Peters, P. C. & Mathews, J. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–439 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  67. Sesana, A., Haardt, F. & Madau, P. Interaction of massive black hole binaries with their stellar environment. 1. Ejection of hypervelocity stars. Astrophys. J. 651, 392–400 (2006).

    Article  ADS  Google Scholar 

  68. Vasiliev, E., Antonini, F. & Merritt, D. The final-parsec problem in the collisionless limit. Astrophys. J. 810, 49 (2015).

    Article  ADS  Google Scholar 

  69. Fastidio, F., Gualandris, A., Sesana, A., Bortolas, E. & Dehnen, W. Eccentricity evolution of PTA sources from cosmological initial conditions. Mon. Not. R. Astron. Soc. 532, 295–304 (2024).

    Article  ADS  Google Scholar 

  70. Phinney, E. S. A practical theorem on gravitational wave backgrounds. Preprint at http://arxiv.org/abs/astro-ph/0108028 (2001).

  71. Huerta, E. A., McWilliams, S. T., Gair, J. R. & Taylor, S. R. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: signal-to-noise ratio calculations. Phys. Rev. D 92, 063010 (2015).

    Article  ADS  Google Scholar 

  72. Sesana, A., Vecchio, A. & Colacino, C. N. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. Mon. Not. R. Astron. Soc. 390, 192 (2008).

    Article  ADS  Google Scholar 

  73. Agazie, G. et al. The NANOGrav 15 yr data set: Bayesian limits on gravitational waves from individual supermassive black hole binaries. Astrophys. J. Lett. 951, 50 (2023).

    Article  ADS  Google Scholar 

  74. Lamb, W. G. & Taylor, S. R. Spectral variance in a stochastic gravitational-wave background from a binary population. Astrophys. J. Lett. 971, 10 (2024).

    Article  ADS  Google Scholar 

  75. Sato-Polito, G. & Zaldarriaga, M. Distribution of the gravitational-wave background from supermassive black holes. Phys. Rev. D 111, 023043 (2025).

    Article  ADS  MathSciNet  Google Scholar 

  76. Xue, X., Pan, Z. & Dai, L. Non-Gaussian statistics of nanohertz stochastic gravitational waves. Phys. Rev. D 111, 043022 (2025).

    Article  ADS  Google Scholar 

  77. Hamers, A. S. An improved numerical fit to the peak harmonic gravitational wave frequency emitted by an eccentric binary. Res. Notes AAS 5, 275 (2021).

    Article  ADS  Google Scholar 

  78. Mitridate, A. et al. PTArcade. Preprint at http://arxiv.org/abs/2306.16377 (2023).

  79. Lamb, W. G., Taylor, S. R. & Haasteren, R. Rapid refitting techniques for Bayesian spectral characterization of the gravitational wave background using pulsar timing arrays. Phys. Rev. D 108, 103019 (2023).

    Article  ADS  Google Scholar 

  80. Moe, M. & Di Stefano, R. Mind your ps and qs: the interrelation between period (p) and mass-ratio (q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article  ADS  Google Scholar 

  81. Jeans, J. H. The origin of binary systems. Mon. Not. R. Astron. Soc. 79, 408 (1919).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Blum, V. Cardoso, G. Carullo, S. Chen, J. Cline, H. Kim, B. Liu, Y. Ma, Z. Pan, S. Tiruvaskar and R. Vicente for useful discussions. The NANOGrav Collaboration receives support from National Science Foundation (NSF) Physics Frontiers Center (Award Nos. 1430284 and 2020265), the Gordon and Betty Moore Foundation, NSF AccelNet (Award No. 2114721), an NSERC Discovery Grant and CIFAR. The Arecibo Observatory is a facility of the NSF operated under a cooperative agreement (Agreement No. AST-1744119) by the University of Central Florida in alliance with Universidad Ana G. Méndez and Yang Enterprises, Inc. The Green Bank Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. Part of this research was performed at the Jet Propulsion Laboratory, under contract with NASA. Y.C. is supported by the Villum Foundation (Grant No. 37766), by the Danish Research Foundation and by the European Union’s H2020 ERC Advanced Grant ‘Black holes: gravitational engines of discovery’ (Grant Agreement No. Gravitas-101052587). The views and opinions expressed here are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. D.J.D. acknowledges support from the Danish Independent Research Fund through a Sapere Aude Starting Grant (No. 121587). A. Mitridate and X.X. are supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2121 Quantum Universe – 390833306). IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. X.X. is funded by Grant No. CNS2023-143767 through MICIU/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR. Y.C. and X.X. acknowledge the support of the Rosenfeld Foundation and the European Consortium for Astroparticle Theory in the form of an exchange travel grant. L.B. acknowledges support from the NSF (Award No. AST-1909933) and from the Research Corporation for Science Advancement under Cottrell Scholar Award No. 27553. P.R.B. is supported by the Science and Technology Facilities Council (Grant No. ST/W000946/1). S.B.-S. gratefully acknowledges the support of a Sloan Fellowship, and the support of the NSF (Award No. 1815664). The work of R.B., N. Laal, X.S., J.T. and D.W. is partly supported by the George and Hannah Bolinger Memorial Fund managed by the College of Science at Oregon State University. M.C., P.P. and S.R.T. acknowledge support from the NSF (Award No. AST-2007993). M.C. was supported by the Vanderbilt Initiative in Data Intensive Astrophysics Fellowship. Support for this work was provided by the NSF through the Grote Reber Fellowship Program administered by Associated Universities, Inc./National Radio Astronomy Observatory. Pulsar research at UBC is supported by an NSERC Discovery Grant and by CIFAR. K.C. is supported by a UBC Four Year Fellowship (6456). M.E.D. acknowledges support from the Naval Research Laboratory through NASA (Contract No. S-15633Y). T.D. and M.T.L. are supported by an NSF Astronomy and Astrophysics Grant (Award No. 2009468). E.C.F. is supported by NASA (Award No. 80GSFC24M0006). G.E.F., S.C.S. and S.J.V. are supported by the NSF (Award No. PHY-2011772). K.A.G. and S.R.T. acknowledge support from an NSF CAREER award (Award No. 2146016). A.D.J. and M.V. acknowledge support from the Caltech and Jet Propulsion Laboratory President’s and Director’s Research and Development Fund. A.D.J. acknowledges support from the Sloan Foundation. N. Laal acknowledges support from a Larry W. Martin and Joyce B. O’Neill Endowed Fellowship in the College of Science at Oregon State University. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (Contract No. 80NM0018D0004). D.R.L. and M.A.M. are supported by the NSF (Grant No. 1458952). M.A.M. is supported by the NSF (Grant No. 2009425). C.M.F.M. was supported in part by the NSF (Grant Nos. NSF PHY-1748958 and AST-2106552). The Dunlap Institute is funded by an endowment established by the David Dunlap family and the University of Toronto. K.D.O. was supported in part by the NSF (Grant No. 2207267). T.T.P. acknowledges support from the Extragalactic Astrophysics Research Group at Eötvös Loránd University, funded by the Eötvös Loránd Research Network, which was used during the development of this research. H.A.R. is supported by NSF Partnerships for Research and Education in Physics (Award No. 2216793). S.M.R. and I.H.S. are CIFAR fellows. Portions of this work performed at NRL were supported by ONR 6.1 basic research funding. J.D.R. also acknowledges support from start-up funds from Texas Tech University. J.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship (Award No. AST-2202388) and acknowledges previous support from the NSF (Award No. 1847938). C.U. acknowledges support from BGU (Kreitman fellowship), and the Council for Higher Education and Israel Academy of Sciences and Humanities (Excellence fellowship). C.A.W. acknowledges support from CIERA, the Adler Planetarium and the Brinson Foundation through a CIERA-Adler postdoctoral fellowship. O.Y. is supported by a NSF Graduate Research Fellowship (Grant No. DGE-2139292).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

This paper uses a decade’s worth of pulsar-timing observations and is the product of the work of many people. Y.C., L.S. and X.X. initiated the project and developed the core idea, with D.J.D. contributing to its development. Y.C., M.D., D.J.D., X.F., A. Mitridate, L.S., and X.X. participated in discussions, provided critical feedback, and shaped the research and analysis. Y.C. coordinated the project and wrote the paper. M.D., X.F. and X.X. developed the analysis code, created the figures and edited the text. X.F. performed the analysis using alternative parameterizations, under the guidance of Y.C. and X.X. D.J.D. offered guidance on the SMBHB population model and the holodeck code, wrote the discussion on the environmental effects from gas and edited the text. A. Mitridate provided guidance on the PTArcade code and the presentation of NANOGrav 15-year data. G.A., A.A, A.M.A., Z.A., P.T.B., P.R.B., H.T.C., K.C., M.E.D., P.B.D., T.D., E.C.F., W.F., E.F., G.E.F., N.G.-D., D.C.G., P.A.G., J.G., R.J.J., M.L.J., D.L.K., M.K., M.T.L., D.R.L., J.L., R.S.L., A. McEwen, M.A.M., N.M., B.W.M., C.N., D.J.N., B.B.P.P., N.S.P., H.A.R., S.M.R., P.S.R., A.S., C.S., B.J.S.-A., I.H.S., K.S., A.S., J.K.S. and H.M.W. developed timing models and ran observations for the NANOGrav 15-year dataset. Development of the holodeck population modelling framework was led by L.Z.K., with contributions from J.A.C-C., D.W., E.C.G., K.G., M.S.S. and S.C. PTArcade, which was used in this analysis, was mainly developed by A. Mitridate, with help from D.W., K.D.O. G.A., A.A., A.M.A., Z.A., J.G.B., P.T.B., B.B., L.B., A.B., P.R.B., S.B.-S., R.B., J.A.C.-C., M.C., S.C., T.C., J.M.C., N.J.C., F.C., H.T.C., K.C., M.E.D., P.B.D., H.D., L.D., T.D., E.C.F., W.F., E.F., G.E.F., N.G.-D., P.A.G., K.A.G., J.G., D.C.G., K.G., J.S.H., R.J.J., A.D.J., M.L.J., L.Z.K., M.K., J.S.K., N. Laal, M.T.L., W.G.L., B.L., T.J.W.L., N. Lewandowska, T.L., D.R.L., J.L., R.S.L., C.-P.M., D.R.M., A. McEwen, J.W.M., M.A.M., N.M., B.W.M., P.M.M., C.M.F.M., A. Mitridate, C.N., D.J.N., S.K.O., K.D.O., T.T.P., B.B.P.P., P.P., N.S.P., H.A.R., S.M.R., P.S.R., J.D.R., J.C.R., A. Saffer, S.C.S., A. Schmiedekamp, C.S., K. Schmitz, B.J.S.-A., X.S., J.S., M.S.S., S.V.S.F., I.H.S., D.R.S., K. Stovall, A. Susobhanan, J.K.S., J.T., S.R.T., J.E.T., C.U., M.V., R.V.H., S.J.V., H.M.W., C.A.W., D.W. and O.Y. developed and validated the NANOGrav 15-year data.

Corresponding authors

Correspondence to Yifan Chen, Xuanye Fan or Xiao Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Daniel, M., D’Orazio, D.J. et al. Inference on inner galaxy structure via gravitational waves from supermassive binaries. Nat Astron (2026). https://doi.org/10.1038/s41550-026-02782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41550-026-02782-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing