Interventional healthcare will evolve from an artisanal craft based on the individual experiences, preferences and traditions of physicians into a discipline that relies on objective decision-making on the basis of large-scale data from heterogeneous sources.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Lightweight SwiM-UNet with multi-dimensional adaptor for efficient on-device medical image segmentation
Scientific Reports Open Access 20 January 2026
-
Process-oriented feedback for ultrasound-guided central venous access training: a randomized controlled trial
BMC Anesthesiology Open Access 30 September 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


References
Obermeyer, Z. & Emanuel, E. J. N. Engl. J. Med.375, 1216–1219 (2016).
Porter, M. E., Larsson, S. & Lee, T. H. N. Engl. J. Med.374, 504–506 (2016).
Gawande, A. N. Engl. J. Med.366, 1716–1723 (2012).
Cho, Z.-H., Jones, J. P. & Singh, M. Foundations of Medical Imaging (Wiley, New York, 1993).
Cleary, K. & Peters, T. M. Annu. Rev. Biomed. Eng.12, 119–142 (2010).
Weiser, T. G. et al. Lancet372, 139–144 (2008).
Weiser, T. G. et al. Lancet385(Suppl. 2), S11 (2015).
Glance, L. G., Osler, T. M. & Neuman, M. D. N. Engl. J. Med.370, 1379–1381 (2014).
Giguère, G. & Love, B. C. Proc. Natl Acad. Sci. USA110, 7613–7618 (2013).
Pohl, J. in Intelligent Decision Making: An AI-Based Approach (eds Phillips-Wren, G. et al.) 41–76 (Springer, Berlin Heidelberg, 2008).
Shen, D., Wu, G. & Suk, H.-I. Annu. Rev. Biomed. Eng.19, 221–248 (2017).
Oakden-Rayner, L. et al. Sci. Rep7, 1648 (2017).
Mitchell, T. O. et al. J. Surg. Res.203, 56–63 (2016).
Lyu, H., Cooper, M., Patel, K., Daniel, M. & Makary, M. A. J. Healthc. Qual.38, 223–234 (2016).
Sanger, P. C. et al. J. Am. Coll. Surg.223, 259–270.e2 (2016).
Ke, C. et al. J. Biomed. Inform.65, 22–33 (2017).
Lalys, F. et al. J. Neurosci. Methods212, 297–307 (2013).
Henry, K. E., Hager, D. N., Pronovost, P. J. & Saria, S. Sci. Transl. Med.7, 299ra122 (2015).
März, K. et al. Int. J. Comput. Assist. Radiol. Surg.10, 749–759 (2015).
Franke, S., Meixensberger, J. & Neumuth, T. J. Biomed. Inform.46, 152–159 (2013).
Padoy, N. et al. Med. Image. Anal.16, 632–641 (2012).
Katić, D. et al. Int. J. Comput. Assist. Radiol. Surg.11, 881–888 (2016).
Schoch, N. et al. Int. J. Comput. Assist. Radiol. Surg.11, 1051–1059 (2016).
Shademan, A. et al. Sci. Transl. Med.8, 337ra64 (2016).
Nathan, M. et al. J. Thorac. Cardiovasc. Surg.144, 1095–1101.e7 (2012).
Birkmeyer, J. D. et al. N. Engl. J. Med.369, 1434–1442 (2013).
Nathwani, J. N. et al. J. Surg. Educ.73, e84–e90 (2016).
Vedula, S. S., Ishii, M. & Hager, G. D. Annu. Rev. Biomed. Eng.19, 301–325 (2017).
Chen, Z. et al. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2343–2350 (IEEE, New York, 2016).
Greenberg, C. C., Ghousseini, H. N., Pavuluri Quamme, S. R., Beasley, H. L. & Wiegmann, D. A. Ann. Surg.261, 32–34 (2015).
Singh, P., Aggarwal, R., Tahir, M., Pucher, P. H. & Darzi, A. A. Ann. Surg.261, 862–869 (2015).
Rojas, E., Munoz-Gama, J., Sepúlveda, M. & Capurro, D. J. Biomed. Inform.61, 224–236 (2016).
Uemura, M. et al. Int. J. Comput. Assist. Radiol. Surg.11, 543–552 (2016).
Russakovsky, O. et al. Int. J. Comput. Vis.115, 211–252 (2015).
Lemke, H. U. & Vannier, M. W. Int. J. Comput. Assist. Radiol. Surg.1, 117–121 (2006).
Rosse, C. & Mejino, J. L. V. Jr J. Biomed. Inform.36, 478–500 (2003).
Ashburner, M. et al. Nat. Genet.25, 25–29 (2000).
Maier-Hein, L. et al. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 (eds Golland, P. et al.) 438–445 (Springer International Publishing Switzerland, 2014).
Warren, E. N. Engl. J. Med.375, 401–403 (2016).
Jordan, M. I. & Mitchell, T. M. Science349, 255–260 (2015).
Kansagra, A. P. et al. Acad. Radiol.23, 30–42 (2016).
Kumar, V. et al. Magn. Reson. Imaging30, 1234–1248 (2012).
Collins, F. S. & Tabak, L. A. Nature505, 612 (2014).
Flin, R., Youngson, G. & Yule, S. Qual. Saf. Health. Care.16, 235–239 (2007).
Lalys, F. & Jannin, P. Int. J. Comput. Assist. Radiol. Surg.9, 495–511 (2014).
Mattmann, C. A. Nature493, 473–475 (2013).
Nichols, T. E. et al. Nat. Neurosci.20, 299–303 (2017).
Acknowledgements
The authors thank the Transregional Collaborative Research Center (SFB/TRR) 125: Cognition-Guided Surgery, funded by the German Research Foundation (DFG), for sponsoring the workshop that served as basis for the manuscript (www.surgical-data-science.org/workshop2016). We also thank N. L. Rodas, M. A. Cypko and all other workshop participants for their valuable input during the workshop, and C. Feldmann for preparing the figures. We acknowledge the support of the European Research Council (ERC-2015-StG-37960), the US National Institutes of Health (NIH-R01EB01152407S1, NIH/NIBIB P41 EB015902, NIH/NCI U24CA180918, NIH/NIBIB P41 EB015898, NIH/NIBIB R01EB014955, NIH R01-DE025265), the US Department of Defense (DOD-W81XWH-13-1-0080), the Royal Society (UF140290) and the Link Foundation Fellowship in Advanced Simulation and Training.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
R.T. is a paid consultant to Galen Robotics, Inc. (owned by Johns Hopkins University; JHU) and owns equity in the company, and is also a co-inventor of technology licensed to Galen Robotics, Elekta, and Intuitive Surgical, for which R.T. has or may receive a portion of licensing fees. Although this Comment does not explicitly reference Galen Robotics or the licensed technology, JHU policy requires that these relationships be disclosed. These arrangements have been reviewed and approved by JHU in accordance with its conflict of interest policy. A.P. is on the scientific advisory board of Stryker Endoscopy (Stryker Corporation; Kalamazoo, Michigan, USA). D.S. is a paid part-time member of Touch Surgery, Kinosis Ltd. Although this Comment does not explicitly reference Touch Surgery technology, University College London (UCL) policy requires that these relationships be disclosed. These arrangements have been reviewed and approved by UCL in accordance with its conflict of interest policy.
Rights and permissions
About this article
Cite this article
Maier-Hein, L., Vedula, S.S., Speidel, S. et al. Surgical data science for next-generation interventions. Nat Biomed Eng 1, 691–696 (2017). https://doi.org/10.1038/s41551-017-0132-7
Published:
Issue date:
DOI: https://doi.org/10.1038/s41551-017-0132-7
This article is cited by
-
Lightweight SwiM-UNet with multi-dimensional adaptor for efficient on-device medical image segmentation
Scientific Reports (2026)
-
International expert consensus-driven surgical process model for robot-assisted hysterectomy: Delphi study results
Surgical Endoscopy (2026)
-
Process-oriented feedback for ultrasound-guided central venous access training: a randomized controlled trial
BMC Anesthesiology (2025)