Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties

Abstract

The low magnetic saturation of iron oxide nanoparticles, which are developed primarily as contrast agents for magnetic resonance imaging, limits the sensitivity of their detection using magnetic particle imaging (MPI). Here, we show that FeCo nanoparticles that have a core diameter of 10 nm and bear a graphitic carbon shell decorated with poly(ethylene glycol) provide an MPI signal intensity that is sixfold and fifteenfold higher than the signals from the superparamagnetic iron oxide tracers VivoTrax and Feraheme, respectively, at the same molar concentration of iron. We also show that the nanoparticles have photothermal and magnetothermal properties and can therefore be used for tumour ablation in mice, and that they have high optical absorbance in a broad near-infrared region spectral range (wavelength, 700–1,200 nm), making them suitable as tracers for photoacoustic imaging. As sensitive multifunctional and multimodal imaging tracers, carbon-coated FeCo nanoparticles may confer advantages in cancer imaging and hyperthermia therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of 10 nm FeCo@C-PEG purified using density gradient separation (fraction 3).
Fig. 2: In vitro MPI and magnetic hyperthermia by FeCo@C-PEG (fraction 3).
Fig. 3: In vivo MPI of FeCo@C-PEG (fraction 3) in mice.
Fig. 4: MRI and PAI with FeCo@C-PEG.
Fig. 5: In vivo magneto- and photothermal therapy with FeCo@C-PEG.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. All data generated, both raw images and analysed datasets, for the figures in this study are available from Figshare with the identifier https://doi.org/10.6084/m9.figshare.10732283.v2.

References

  1. Smith, B. R. & Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 117, 901–986 (2017).

    CAS  PubMed  Google Scholar 

  2. Kunjachan, S., Ehling, J., Storm, G., Kiessling, F. & Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 115, 10907–10937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Signore, A., Mather, S. J., Piaggio, G., Malviya, G. & Dierckx, R. A. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem. Rev. 110, 3112–3145 (2010).

    CAS  PubMed  Google Scholar 

  4. Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, L., Mendoza-Garcia, A., Li, Q. & Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016).

    CAS  PubMed  Google Scholar 

  6. Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

    CAS  PubMed  Google Scholar 

  7. Goodwill, P. W. et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv. Mater. 24, 3870–3877 (2012).

    CAS  PubMed  Google Scholar 

  8. Lemaster, J. E., Chen, F., Kim, T., Hariri, A. & Jokerst, J. V. Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells. ACS Appl. Nano Mater. 1, 1321–1331 (2018).

    CAS  Google Scholar 

  9. Ludewig, P. et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 11, 10480–10488 (2017).

    CAS  PubMed  Google Scholar 

  10. Tay, Z. W. et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12, 3699–3713 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu, E. Y. et al. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 11, 12067–12076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arami, H. et al. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52, 251–261 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferguson, R. M. et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans. Med. Imaging 34, 1077–1084 (2015).

    PubMed  Google Scholar 

  14. Yu, E. Y. et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 17, 1648–1654 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, G. et al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18, 182–189 (2018).

    CAS  PubMed  Google Scholar 

  16. Pablico-Lansigan, M. H., Situ, S. F. & Samia, A. C. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5, 4040–4055 (2013).

    CAS  PubMed  Google Scholar 

  17. Tomitaka, A., Arami, H., Gandhi, S. & Krishnan, K. M. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7, 16890–16898 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, B. et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci. Rep. 5, 14055 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Zheng, B. et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6, 291–301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, Y., Liu, X., Liang, Q., Liang, X. J. & Tian, J. Optimization and design of magnetic ferrite nanoparticles with uniform tumour distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 19, 3618–3626 (2019).

    CAS  PubMed  Google Scholar 

  21. Arami, H. & Krishnan, K. M. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J. Appl. Phys. 115, 17B306 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Khandhar, A. P. et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9, 1299–1306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arami, H., Ferguson, R. M., Khandhar, A. P. & Krishnan, K. M. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med. Phys. 40, 071904 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Bauer, L. M., Situ, S. F., Griswold, M. A. & Samia, A. C. Magnetic particle imaging tracers: state-of-the-art and future directions. J. Phys. Chem. Lett. 6, 2509–2517 (2015).

    CAS  PubMed  Google Scholar 

  25. Ferguson, M. R., Minard, K. R. & Krishnan, K. M. Optimization of nanoparticle core size for magnetic particle imaging. J. Magn. Magn. Mater. 321, 1548–1551 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, B. et al. Seeing SPIOs directly in vivo with magnetic particle imaging. Mol. Imaging Biol. 19, 385–390 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Gu, E., Chen, W.-Y., Gu, J., Burridge, P. & Wu, J. C. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2, 335–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seo, W. S. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971–976 (2006).

    CAS  PubMed  Google Scholar 

  29. Yu, J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 26, 4114–4120 (2014).

    CAS  PubMed  Google Scholar 

  30. Gao, J. et al. Multifunctional yolk−shell nanoparticles: a potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 130, 11828–11833 (2008).

    CAS  PubMed  Google Scholar 

  31. Zeng, J. et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv. Mater. 26, 2694–2698 (2014).

    CAS  PubMed  Google Scholar 

  32. Song, G. et al. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 27, 6110–6117 (2015).

    CAS  PubMed  Google Scholar 

  33. Sun, X. et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 48, 939–942 (2009).

    CAS  Google Scholar 

  34. Chen, Z. et al. Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection. ACS Nano 6, 1094–1101 (2012).

    CAS  PubMed  Google Scholar 

  35. Li, Y. et al. In situ targeted MRI detection of helicobacter pylori with stable magnetic graphitic nanocapsules. Nat. Commun. 8, 15653 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roper, D. K., Ahn, W. & Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007).

    CAS  Google Scholar 

  37. Qiwei, T. et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5, 9761–9771 (2011).

    Google Scholar 

  38. Kaul, M. G. et al. In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with resovist. Phys. Med. Biol. 62, 3454–3469 (2017).

    CAS  PubMed  Google Scholar 

  39. Espinosa, A. et al. Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater. 28, 1803660 (2018).

    Google Scholar 

  40. Reimer, P. & Balzer, T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003).

    PubMed  Google Scholar 

  41. Kircher, M. F. et al. A brain tumour molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, J. et al. Semiconducting polymer nanoparticles for centimeters-deep photoacoustic imaging in the second near-infrared window. Adv. Mater. 29, 1703403 (2017).

    Google Scholar 

  43. Kim, T., Lemaster, J. E., Chen, F., Li, J. & Jokerst, J. V. Photoacoustic imaging of human mesenchymal stem cells labeled with Prussian blue-poly(l-lysine) nanocomplexes. ACS Nano 11, 9022–9032 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang, J. et al. Enhanced performance of a molecular photoacoustic imaging agent by encapsulation in mesoporous silicon nanoparticles. Adv. Mater. 30, 1800512 (2018).

    Google Scholar 

  45. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    CAS  Google Scholar 

  46. Espinosa, A. et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10, 2436–2446 (2016).

    CAS  PubMed  Google Scholar 

  47. Zhou, J. et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 12, 2643–2651 (2018).

    CAS  PubMed  Google Scholar 

  48. Zhang, J. et al. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 29, 1604764 (2017).

    Google Scholar 

  49. Shang, W. et al. Core-shell gold nanorod@metal-organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater. 29, 1604381 (2017).

    Google Scholar 

  50. Kim, D. J., Pal, M. & Seo, W. S. Confined growth of highly uniform and single bcc-phased FeCo/graphitic-shell nanocrystals in SBA-15. Micropor. Mesopor. Mat. 180, 32–39 (2013).

    CAS  Google Scholar 

  51. Hao, J. et al. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets. Adv. Sci. 4, 1600160 (2017).

    Google Scholar 

  52. Yu, M. & Zheng, J. Clearance pathways and tumour targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of Stanford Centre for Innovation in In-Vivo Imaging (SCI3) Core Facility. This work was supported by the Stanford University National Cancer Institute (CCNE-T grant no. U54CA199075).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and J.R. designed the experiments. G.S. performed the experiments. M.K., Z.C. and H.D. contributed to the synthesis of nanoalloy. Y.D. and S.X.W. performed the measurement of magnetic saturation of nanoalloy and analysed the data. Y.-S.C. and S.S.G. contributed to the NIR-II PAI and analysed the results. G.S., X.Z. and J.R. analysed the data and wrote the paper. J.R. supervised the study.

Corresponding authors

Correspondence to Guosheng Song or Jianghong Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Kenney, M., Chen, YS. et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng 4, 325–334 (2020). https://doi.org/10.1038/s41551-019-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-019-0506-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer