Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for the vascular patterning of engineered tissues for organ repair

Abstract

The loss of organ function following traumatic injury is often irreversible and the demand for organ replacements continues to exceed supply. This discrepancy has driven the development of therapies and engineered tissues for the repair or replacement of damaged tissues. However, the survival of engineered tissues is constrained by the challenge of establishing a functional vasculature. Efforts have therefore focused on strategies that induce vascularization in tissue implants or stimulate vascular growth in recipients of the therapies. Here we discuss recent advances in vascular biology, biomaterials chemistry and 3D printing techniques for vascular patterning in engineered tissues. For tissue regeneration to be clinically viable, vascular formation must be guided across scales ranging from micrometres to millimetres through biological, chemical and physical approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for the development of vasculature.
Fig. 2: Biological mechanisms underlying sprouting and intussusceptive angiogenesis, and technological approaches to promote angiogenesis.
Fig. 3: Chemical methods for creating vascularizing biomaterials.
Fig. 4: Bioprinting.
Fig. 5: Challenges facing organ-scale bioprinting.

Similar content being viewed by others

References

  1. Brittberg, M., Recker, D., Ilgenfritz, J. & Saris, D. B. F. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am. J. Sports Med. 46, 1343–1351 (2018).

    Article  PubMed  Google Scholar 

  2. Schmidt, C. Gintuit cell therapy approval signals shift at US regulator. Nat. Biotechnol. 30, 479–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Swan, M. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3–5. Rejuvenation Res. 14, 699–704 (2011).

    Article  PubMed  Google Scholar 

  4. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phelps, E. A. & Garcia, A. J. Update on therapeutic vascularization strategies. Regen. Med. 4, 65–80 (2009).

    Article  PubMed  Google Scholar 

  7. Gandhi, J. K., Opara, E. C. & Brey, E. M. Alginate-based strategies for therapeutic vascularization. Ther. Deliv. 4, 327–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Bowers, D. T., Song, W., Wang, L.-H. & Ma, M. Engineering the vasculature for islet transplantation. Acta Biomater. 95, 131–151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gianni‐Barrera, R. et al. Therapeutic vascularization in regenerative medicine. Stem Cells Transl. Med. 9, 433–444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson, Z. E. et al. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br. J. Clin. Pharmacol. 56, 433–440 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Risau, W. & Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, B. et al. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat. Protoc. 13, 1793–1813 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, B. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szklanny, A. A. et al. 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion. Adv. Mater. 33, 2102661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X. et al. Improving islet engraftment by gene therapy. J. Transplant. 2011, e594851 (2011).

    Article  Google Scholar 

  17. Ajioka, I. et al. Establishment of heterotropic liver tissue mass with direct link to the host liver following implantation of hepatocytes transfected with vascular endothelial growth factor gene in mice. Tissue Eng. 7, 335–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Vlahos, A. E. et al. Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy. Biomaterials 232, 119710 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Weaver, J. D. et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Phelps, E. A., Templeman, K. L., Thulé, P. M. & García, A. J. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization. Drug Deliv. Transl. Res. 5, 125–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mirabella, T. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat. Biomed. Eng. 1, 0083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci. USA 110, 7586–7591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mastrullo, V., Cathery, W., Velliou, E., Madeddu, P. & Campagnolo, P. Angiogenesis in tissue engineering: as nature intended? Front. Bioeng. Biotechnol. 2020, 188 (2020).

    Article  Google Scholar 

  25. Goldie, L. C., Nix, M. K. & Hirschi, K. K. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 4, 257–263 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–966 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. De Spiegelaere, W. et al. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J. Vasc. Res. 49, 390–404 (2012).

    Article  PubMed  Google Scholar 

  30. Rouwkema, J. & Khademhosseini, A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 34, 733–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Burri, P. H., Hlushchuk, R. & Djonov, V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev. Dyn. 231, 474–488 (2004).

    Article  PubMed  Google Scholar 

  32. Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  Google Scholar 

  33. Roesel, J. F. & Nanney, L. B. Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair. J. Surg. Res. 58, 449–459 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, L.-H. et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517–1527 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Li, A., Dubey, S., Varney, M. L., Dave, B. J. & Singh, R. K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170, 3369–3376 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG–peptide macromers. Biomaterials 31, 3736–3743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Djonov, V., Baum, O. & Burri, P. H. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 314, 107–117 (2003).

    Article  PubMed  Google Scholar 

  39. Caduff, J. H., Fischer, L. C. & Burri, P. H. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 216, 154–164 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Grundmann, S., Piek, J. J., Pasterkamp, G. & Hoefer, I. E. Arteriogenesis: basic mechanisms and therapeutic stimulation. Eur. J. Clin. Invest. 37, 755–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Henry, T. D. et al. The VIVA trial. Circulation 107, 1359–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Simón-Yarza, T. et al. Vascular endothelial growth factor-delivery systems for cardiac repair: an overview. Theranostics 2, 541–552 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Darden, J., Payne, L. B., Zhao, H. & Chappell, J. C. Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis 22, 167–183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Blatchley, M. R., Hall, F., Wang, S., Pruitt, H. C. & Gerecht, S. Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis. Sci. Adv. 5, eaau7518 (2019). This study describes the mechanism through which hypoxia and the material properties of the matrix impact vasculogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Longchamp, A. et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173, 117–129.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fiedler, J. et al. Functional microRNA library screening identifies the hypoxaMiR MiR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid. Redox Signal. 21, 1167–1176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dou, C. et al. Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv. Sci. 5, 1700578 (2018).

    Article  Google Scholar 

  50. Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lamichhane, T. N., Leung, C. A., Douti, L. Y. & Jay, S. M. Ethanol induces enhanced vascularization bioactivity of endothelial cell-derived extracellular vesicles via regulation of microRNAs and long non-coding RNAs. Sci. Rep. 7, 13794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Welten, S. M. J. et al. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ. Res. 115, 696–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, B. et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed. Eng. 2, 293–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003).

    Article  PubMed  Google Scholar 

  55. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina. Circulation 115, 3165–3172 (2007).

    Article  PubMed  Google Scholar 

  56. Calderon, G. A. et al. Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomater. Sci. 5, 1652–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840–3847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pedowitz, N. J., Batt, A. R., Darabedian, N. & Pratt, M. R. MYPT1 O-GlcNAc modification regulates sphingosine-1-phosphate mediated contraction. Nat. Chem. Biol. 17, 169–177 (2021). This study details how a particular post-translational modification affects diabetic wound healing.

    Article  CAS  PubMed  Google Scholar 

  59. Nadkarni, S. et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc. Natl Acad. Sci. USA 113, E8415–E8424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mor, F., Quintana, F. J. & Cohen, I. R. Angiogenesis–inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol. 172, 4618–4623 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Marek, N. et al. Increased spontaneous production of VEGF by CD4+ T cells in type 1 diabetes. Clin. Immunol. 137, 261–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Ribatti, D. & Crivellato, E. Immune cells and angiogenesis. J. Cell. Mol. Med. 13, 2822–2833 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graney, P. L. et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 6, eaay6391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fleischer, S., Tavakol, D. N. & Vunjak-Novakovic, G. From arteries to capillaries: approaches to engineering human vasculature. Adv. Funct. Mater. 30, 1910811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, S. et al. Application of stem cells in engineered vascular graft and vascularized organs. Semin. Cell Dev. Biol. 144, 31–40 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Kumar, A. H. S. & Caplice, N. M. Clinical potential of adult vascular progenitor cells. Arter. Thromb. Vasc. Biol. 30, 1080–1087 (2010).

    Article  CAS  Google Scholar 

  67. Bayraktutan, U. Endothelial progenitor cells: potential novel therapeutics for ischaemic stroke. Pharmacol. Res. 144, 181–191 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Nowbar, A. N. et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Br. Med. J. 348, g2688 (2014).

    Article  Google Scholar 

  69. Krawiec, J. T. & Vorp, D. A. Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33, 3388–3400 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Galat, V. et al. Transgene reactivation in induced pluripotent stem cell derivatives and reversion to pluripotency of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Dev. 25, 1060–1072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hentze, H. et al. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2, 198–210 (2009).

    Article  PubMed  Google Scholar 

  72. Quint, C. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl Acad. Sci. USA 108, 9214–9219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neff, L. P. et al. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J. Vasc. Surg. 53, 426–434 (2011).

    Article  PubMed  Google Scholar 

  74. Kaushal, S. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7, 1035–1040 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He, H., Shirota, T., Yasui, H. & Matsuda, T. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J. Thorac. Cardiovasc. Surg. 126, 455–464 (2003).

    Article  PubMed  Google Scholar 

  76. Zhu, C. et al. Development of anti-atherosclerotic tissue-engineered blood vessel by A20-regulated endothelial progenitor cells seeding decellularized vascular matrix. Biomaterials 29, 2628–2636 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Bu, L. et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460, 113–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Ferreira, L. S. et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ. Res. 101, 286–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Levenberg, S., Ferreira, L. S., Chen-Konak, L., Kraehenbuehl, T. P. & Langer, R. Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nat. Protoc. 5, 1115–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hill, K. L. et al. Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp. Hematol. 38, 246–257.e1 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cheung, C. & Sinha, S. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J. Mol. Cell. Cardiol. 51, 651–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Sone, M. et al. Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arter. Thromb. Vasc. Biol. 27, 2127–2134 (2007).

    Article  CAS  Google Scholar 

  85. Taura, D. et al. Induction and isolation of vascular cells from human induced pluripotent stem cells—brief report. Arterioscler. Thromb. Vasc. Biol. 29, 1100–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Patsch, C. et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17, 994–1003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sundaram, S., Echter, A., Sivarapatna, A., Qiu, C. & Niklason, L. Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Eng. A 20, 740–750 (2014).

    CAS  Google Scholar 

  88. Wang, L. et al. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin. Biol. Ther. 16, 317–330 (2016).

    Article  PubMed  Google Scholar 

  89. Jang, S., Collin de l’Hortet, A. & Soto-Gutierrez, A. Induced pluripotent stem cell-derived endothelial cells: overview, current advances, applications, and future directions. Am. J. Pathol. 189, 502–512 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Margariti, A. et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc. Natl Acad. Sci. USA 109, 13793–13798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shen, M., Quertermous, T., Fischbein, M. P. & Wu, J. C. Generation of vascular smooth muscle cells from induced pluripotent stem cells: methods, applications, and considerations. Circ. Res. 128, 670–686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Generali, M. et al. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells. Acta Biomater. 97, 333–343 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Abaci, H. E. et al. Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv. Healthc. Mater. 5, 1800–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ciampi, O. et al. Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Sci. Rep. 9, 8001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, Y. Y. et al. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35, 8960–8969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo, J. et al. Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell 26, 251–261.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gui, L. et al. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102, 120–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Atchison, L. et al. iPSC-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of Hutchinson–Gilford progeria syndrome. Stem Cell Rep. 14, 325–337 (2020).

    Article  CAS  Google Scholar 

  99. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Majesky, M. W. Developmental basis of vascular smooth muscle diversity. Arter. Thromb. Vasc. Biol. 27, 1248–1258 (2007).

    Article  CAS  Google Scholar 

  101. Turner, M. et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13, 382–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Wilmut, I. et al. Development of a global network of induced pluripotent stem cell haplobanks. Regen. Med. 10, 235–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, S. et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells 36, 1552–1566 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 42, 413–423 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A. & Ribatti, D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed. Res. Int. 2014, 756078 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Senger, D. R. & Davis, G. E. Angiogenesis. Cold Spring Harb. Perspect. Biol. 3, a005090 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stupack, D. G. & Cheresh, D. A. ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci. STKE 2002, pe7 (2002).

    Article  PubMed  Google Scholar 

  110. Ouyang, L. et al. MMP‑sensitive PEG hydrogel modified with RGD promotes bFGF, VEGF and EPC‑mediated angiogenesis. Exp. Ther. Med. 18, 2933–2941 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nemati, S. et al. Alginate–gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol. Bioeng. 114, 2920–2930 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Li, Z. et al. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater. 13, 88–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Seo, Y., Jung, Y. & Kim, S. H. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 67, 270–281 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Griffin, M. E., Sorum, A. W., Miller, G. M., Goddard, W. A. & Hsieh-Wilson, L. C. Sulfated glycans engage the Ang–Tie pathway to regulate vascular development. Nat. Chem. Biol. 17, 178–186 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Jia, J. et al. Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Sci. Adv. 6, eaaz5894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ruehle, M. A. et al. Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci. Adv. 6, eabb6351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mandrycky, C., Hadland, B. & Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci. Adv. 6, eabb3629 (2020). This study quantifies the effect of vessel geometry and perfusion-related forces on endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, J. et al. Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nat. Biomed. Eng. 5, 89–102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wolf, K. J., Weiss, J. D., Uzel, S. G. M., Skylar-Scott, M. A. & Lewis, J. A. Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 29, 667–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Munarin, F., Kant, R. J., Rupert, C. E., Khoo, A. & Coulombe, K. L. K. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 251, 120033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nih, L. R., Gojgini, S., Carmichael, S. T. & Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 17, 642–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, A. S. et al. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat. Biomed. Eng. 2, 104–113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aday, S. et al. Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nat. Commun. 8, 747 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Coindre, V. F., Carleton, M. M. & Sefton, M. V. Methacrylic acid copolymer coating enhances constructive remodeling of polypropylene mesh by increasing the vascular response. Adv. Healthc. Mater. 8, 1900667 (2019).

    Article  Google Scholar 

  125. Coindre, V. F., Kinney, S. M. & Sefton, M. V. Methacrylic acid copolymer coating of polypropylene mesh chamber improves subcutaneous islet engraftment. Biomaterials 259, 120324 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Yu, Y. et al. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. Sci. Adv. 7, eabd8217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, X. et al. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction. Sci. Transl. Med. 11, eaau6210 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Mazio, C. et al. Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials 192, 159–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018). This study describes the creation of partially ordered peptides for vascularizing materials with tunable properties on the basis of ordered/disordered domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, L. et al. Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials 175, 44–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Dor, Y. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tafuro, S. et al. Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc. Res. 83, 663–671 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ozawa, C. R. et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 113, 516–527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ozaki, H. et al. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood–retinal barrier in rabbits and primates. Exp. Eye Res. 64, 505–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Murphy, W. L., Peters, M. C., Kohn, D. H. & Mooney, D. J. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21, 2521–2527 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Lee, K. W. et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant. Proc. 36, 2464–2465 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Zisch, A. H. et al. Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J. 17, 2260–2262 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L. & Hubbell, J. A. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68, 704–716 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF–fibrin matrices for endothelialization. J. Control. Release 72, 101–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Moulisová, V. et al. Engineered microenvironments for synergistic VEGF–integrin signalling during vascularization. Biomaterials 126, 61–74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Brady, A. C. et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng. A 19, 2544–2552 (2013).

    Article  CAS  Google Scholar 

  143. Liang, J. P., Accolla, R. P., Jiang, K., Li, Y. & Stabler, C. L. Controlled release of anti-inflammatory and proangiogenic factors from macroporous scaffolds. Tissue Eng. A 27, 1275–1289 (2021).

    Article  CAS  Google Scholar 

  144. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yin, N. et al. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes. Mater. Sci. Eng. C 59, 958–964 (2016).

    Article  CAS  Google Scholar 

  146. Lee, J., Yang, C., Ahn, S., Choi, Y. & Lee, K. Enhanced NO-induced angiogenesis via NO/H2S co-delivery from self-assembled nanoparticles. Biomater. Sci. 9, 5150–5159 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Santulli, G. et al. In vivo properties of the proangiogenic peptide QK. J. Transl. Med. 7, 41 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. D’Andrea, L. D. et al. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc. Natl Acad. Sci. USA 102, 14215–14220 (2005). This study describes the creation of a VEGF mimic with vascularizing properties similar to those of the parent protein.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kumar, V. A. et al. Highly angiogenic peptide nanofibers. ACS Nano 9, 860–868 (2015). This study describes the creation of an angiogenic self-assembling peptide–hydrogel with a VEGF mimic in the primary sequence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kumar, V. A. et al. Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials 98, 113–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Moore, A. N. et al. Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials 161, 154–163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lopez-Silva, T. L. et al. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231, 119667 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Carrejo, N. C. et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater. Sci. Eng. 4, 1386–1396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lopez-Silva, T. L. et al. Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury. Biomaterials 265, 120401 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Lai, C. S. E. et al. A combined conduit-bioactive hydrogel approach for regeneration of transected sciatic nerves. ACS Appl. Bio Mater. 2022, 4611–4624 (2022).

    Article  Google Scholar 

  156. Howard, D., Buttery, L. D., Shakesheff, K. M. & Roberts, S. J.Tissue engineering: strategies, stem cells and scaffolds. J. Anat. 213, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Sarker, M. D., Naghieh, S., Sharma, N. K. & Chen, X. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J. Pharm. Anal. 8, 277–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Devillard, C. D. & Marquette, C. A. Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front. Bioeng. Biotechnol. 9, 721843 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hynes, W. F. et al. Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model. Sci. Adv. 6, eabb3308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kinstlinger, I. S. et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat. Biomed. Eng. 4, 916–932 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Papaioannou, T. G. & Stefanadis, C. Vascular wall shear stress: basic principles and methods. Hell. J. Cardiol. 46, 9–15 (2005).

    Google Scholar 

  163. Yilmaz, B., Al Rashid, A., Mou, Y. A., Evis, Z. & Koç, M. Bioprinting: a review of processes, materials and applications. Bioprinting 23, e00148 (2021).

    Article  Google Scholar 

  164. Emerson, A. E., McCall, A. B., Brady, S. R., Slaby, E. M. & Weaver, J. D. Hydrogel injection molding to generate complex cell encapsulation geometries. ACS Biomater. Sci. Eng. 8, 4002–4013 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019). This study describes a method for rapidly creating vascular networks between densely packed cellular aggregates, for tissue engineering applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019). Fabricates large-scale tissue engineering scaffolds using extrusion 3D printing.

    Article  CAS  PubMed  Google Scholar 

  167. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019). This study describes the use of 3D printing to fabricate high-resolution structures using biocompatible materials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Anandakrishnan, N. et al. Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv. Healthc. Mater. 10, 2002103 (2021).

    Article  CAS  Google Scholar 

  171. Galarraga, J. H., Kwon, M. Y. & Burdick, J. A. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci. Rep. 9, 19987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ouyang, L., Highley, C. B., Sun, W. & Burdick, J. A. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv. Mater. 29, 1604983 (2017).

    Article  Google Scholar 

  173. Datta, P., Dey, M., Ataie, Z., Unutmaz, D. & Ozbolat, I. T. 3D bioprinting for reconstituting the cancer microenvironment. npj Precis. Oncol. 4, 18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Shiwarski, D. J., Hudson, A. R., Tashman, J. W. & Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 5, 010904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gao, G. et al. Construction of a novel in vitro atherosclerotic model from geometry-tunable artery equivalents engineered via in-bath coaxial cell printing. Adv. Funct. Mater. 31, 2008878 (2021).

    Article  CAS  Google Scholar 

  178. Cho, W. W., Ahn, M., Kim, B. S. & Cho, D. W. Blood-lymphatic integrated system with heterogeneous melanoma spheroids via in-bath three-dimensional bioprinting for modelling of combinational targeted therapy. Adv. Sci. 9, e2202093 (2022).

    Article  Google Scholar 

  179. Kim, B. S. et al. Construction of tissue-level cancer-vascular model with high-precision position control via in situ 3D cell printing. Small Methods 5, 2100072 (2021).

    Article  CAS  Google Scholar 

  180. Singh, N. K. et al. Coaxial cell printing of a human glomerular model: anin vitroglomerular filtration barrier and its pathophysiology. Biofabrication 15, 024101 (2023).

    Article  Google Scholar 

  181. Boularaoui, S., Al Hussein, G., Khan, K. A., Christoforou, N. & Stefanini, C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 20, e00093 (2020).

    Article  Google Scholar 

  182. Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    Article  PubMed  Google Scholar 

  183. Derakhshanfar, S. et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3, 144–156 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Hwang, H. H., Zhu, W., Victorine, G., Lawrence, N. & Chen, S. 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods 2, 1700277 (2018).

    Article  PubMed  Google Scholar 

  185. Ikuta, K. & Hirowatari, K. Real three dimensional micro fabrication using stereo lithography and metal molding. In Proc. IEEE Micro Electro Mechanical Systems 42–47 (IEEE, 2002).

  186. Fonseca, A. C. et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem. Rev. 120, 11093–11139 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  187. Warner, J., Soman, P., Zhu, W., Tom, M. & Chen, S. Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomater. Sci. Eng. 2, 1763–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tomov, M. L. et al. A 3D bioprinted in vitro model of pulmonary artery atresia to evaluate endothelial cell response to microenvironment. Adv. Healthc. Mater. 10, 2100968 (2021).

    Article  CAS  Google Scholar 

  190. Bagheri Saed, A. et al. An in vitro study on the key features of poly l-lactic acid/biphasic calcium phosphate scaffolds fabricated via DLP 3D printing for bone grafting. Eur. Polym. J. 141, 110057 (2020).

    Article  CAS  Google Scholar 

  191. Jiang, P. et al. Grayscale stereolithography of gradient hydrogel with site-selective shape deformation. Adv. Mater. Technol. 7, 2101288 (2022).

    Article  CAS  Google Scholar 

  192. You, S. et al. Mitigating scattering effects in light-based three-dimensional printing using machine learning. J. Manuf. Sci. Eng. 142, 081002 (2020).

    Article  Google Scholar 

  193. Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

    Article  CAS  Google Scholar 

  194. You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Seymour, A. J., Westerfield, A. D., Cornelius, V. C., Skylar-Scott, M. A. & Heilshorn, S. C. Bioprinted microvasculature: progressing from structure to function. Biofabrication 14, 022002 (2022). This review provides a comprehensive overview of the challenges and strategies surrounding the 3D printing of vasculature.

    Article  CAS  Google Scholar 

  196. Urciuolo, A. et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 14, 3128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Betz, C., Lenard, A., Belting, H. G. & Affolter, M. Cell behaviors and dynamics during angiogenesis. Development 143, 2249–2260 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Labarrere, C. A., Dabiri, A. E. & Kassab, G. S. Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front. Bioeng. Biotechnol. 8, 123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kelly, B. E. et al. Computed axial lithography (CAL): toward single step 3D printing of arbitrary geometries. Preprint at https://arxiv.org/abs/1705.05893 (2017).

  201. Hutson, C. B. et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng. A 17, 1713–1723 (2011).

    Article  CAS  Google Scholar 

  202. Ye, W. et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater. Des. 192, 108757 (2020).

    Article  CAS  Google Scholar 

  203. Zhang, B. et al. Strengths, weaknesses, and applications of computational axial lithography in tissue engineering. Biodes. Manuf. 3, 5–6 (2020).

    Article  Google Scholar 

  204. Hiob, M. A., She, S., Muiznieks, L. D. & Weiss, A. S. Biomaterials and modifications in the development of small-diameter vascular grafts. ACS Biomater. Sci. Eng. 3, 712–723 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Ravi, S. & Chaikof, E. L. Biomaterials for vascular tissue engineering. Regen. Med. 5, 107–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Jang, T. S. et al. 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int. J. Bioprint 4, 126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Akentjew, T. L. et al. Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries. Nat. Commun. 10, 3098 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Pei, B. et al. Fiber-reinforced scaffolds in soft tissue engineering. Regen. Biomater. 4, 257–268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, Z. et al. 3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Mater. Horiz. 6, 733–742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, J. et al. 3D printing of silk particle-reinforced chitosan hydrogel structures and their properties. ACS Biomater. Sci. Eng. 4, 3036–3046 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Cellular & gene therapy guidances, FDA https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances (2024).

  212. LAVIV. FDA https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/laviv (2018).

  213. Schurr, M. J. et al. Phase I/II clinical evaluation of StrataGraft: a consistent, pathogen-free human skin substitute. J. Trauma 66, 866–874 (2009).

    PubMed  PubMed Central  Google Scholar 

  214. Grigoryan, B. et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Camasão, D. B. & Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio 10, 100106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Erbel, R. & Eggebrecht, H. Aortic dimensions and the risk of dissection. Heart 92, 137–142 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Keelan, J. & Hague, J. P. The role of vascular complexity on optimal junction exponents. Sci. Rep. 11, 5408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78, 431–453 (1981).

    Article  CAS  PubMed  Google Scholar 

  219. Painter, P. R., Edén, P. & Bengtsson, H. U. Pulsatile blood flow, shear force, energy dissipation and Murray’s law. Theor. Biol. Med. Model. 3, 31 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Morawietz, H. et al. Regulation of the endothelin system by shear stress in human endothelial cells. J. Physiol. 525, 761–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Taylor, D. J. et al. Refining our understanding of the flow through coronary artery branches; revisiting Murray’s law in human epicardial coronary arteries. Front. Physiol. 13, 871912 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Adam, J. A. Blood vessel branching: beyond the standard calculus problem. Math. Mag. 84, 196–207 (2011).

    Article  Google Scholar 

  223. Xu, J. & Shi, G. P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim. Biophys. Acta 1842, 2106–2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tucker, W. D., Arora, Y. & Mahajan, K. Anatomy, blood vessels. in StatPearls [Internet] (StatPearls Publishing, 2023); https://pubmed.ncbi.nlm.nih.gov/29262226/

  225. Russo, T. A., Banuth, A. M. M., Nader, H. B. & Dreyfuss, J. L. Altered shear stress on endothelial cells leads to remodeling of extracellular matrix and induction of angiogenesis. PLoS ONE 15, e0241040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kubota, Y., Kleinman, H. K., Martin, G. R. & Lawley, T. J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 (1988).

    Article  CAS  PubMed  Google Scholar 

  227. Kalebic, T., Garbisa, S., Glaser, B. & Liotta, L. A. Basement membrane collagen: degradation by migrating endothelial cells. Science 221, 281–283 (1983).

    Article  CAS  PubMed  Google Scholar 

  228. Marieb, E. N. Essentials of Human Anatomy & Physiology 11th edn (Pearson, 2015).

  229. Courtney, J. M. & Sutherland, B. Harnessing the stem cell properties of pericytes to repair the brain. Neural Regen. Res. 15, 1021–1022 (2020).

    Article  PubMed  Google Scholar 

  230. Daneman, R. & Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Hanrahan, V. et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma–carcinoma sequence during colorectal cancer progression. J. Pathol. 200, 183–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  232. Holmes, D. I. R. & Zachary, I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6, 209 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Chau, K., Hennessy, A. & Makris, A. Placental growth factor and pre-eclampsia. J. Hum. Hypertens. 31, 782–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Baldwin, M. E. et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol. Cell. Biol. 25, 2441–2449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang, F. et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl Acad. Sci. USA 106, 6152–6157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Duffy, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. in Madame Curie Bioscience Database [Internet] (Landes Bioscience, 2013); https://www.ncbi.nlm.nih.gov/books/NBK6482/

  238. Bates, D. O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 87, 262–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Thurston, G. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J. Anat. 200, 575–580 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Krilleke, D., Ng, Y.-S. E. & Shima, D. T. The heparin-binding domain confers diverse functions of VEGF-A in development and disease: a structure–function study. Biochem. Soc. Trans. 37, 1201–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  241. Park, J. E., Keller, G. A. & Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Catena, R. et al. Increased expression of VEGF121/VEGF165–189 ratio results in a significant enhancement of human prostate tumor angiogenesis. Int. J. Cancer 120, 2096–2109 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Roskoski, R. VEGF receptor protein–tyrosine kinases: structure and regulation. Biochem. Biophys. Res. Commun. 375, 287–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf–MEK–MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    Article  CAS  PubMed  Google Scholar 

  246. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  247. Chen, D. & Simons, M. Emerging roles of PLCγ1 in endothelial biology. Sci. Signal. 14, eabc6612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Perrin, R. M. et al. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia 48, 2422–2427 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. S. Miller for guidance and helpful discussions. We acknowledge funding from the Defense Advanced Research Projects Agency under agreement numbers FA8650-21-1-7119 and AWD00001596, the Advanced Research Projects Agency for Health under award number AY1AX000003, and Breakthrough T1D awards 3-SRA-2025-1640-S-B, 3-SRA-2022-1255-S-B, 3-SRA-2023-1398-S-B, 3-SRA-2021-1023-S-B and 3-SRA-2024-1564-S-B.

Author information

Authors and Affiliations

Authors

Contributions

K.D.J. and S.P. contributed equally to researching, drafting and editing the majority of the paper and figures. J.W.R.S. researched and drafted numerous sections that discuss chemistry-based approaches for encouraging vascularization in vivo. J.D.W. provided valuable additions to the text and performed the final editing. J.D.H. and O.V. conceptualized the paper and supervised the writing.

Corresponding author

Correspondence to Omid Veiseh.

Ethics declarations

Competing interests

J.D.W. is a co-founder of and holds equity in ImmunoShield Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Shaochen Chen, Milica Radisic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janson, K.D., Parkhideh, S., Swain, J.W.R. et al. Strategies for the vascular patterning of engineered tissues for organ repair. Nat. Biomed. Eng 9, 1007–1025 (2025). https://doi.org/10.1038/s41551-025-01420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01420-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research