Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer biomarkers discovered using pan-cancer plasma proteomic profiling

An Author Correction to this article was published on 22 September 2025

This article has been updated

Abstract

Mass-spectrometry-based proteomic data of tumour patient plasma samples present opportunities for improving cancer detection. Here we generate plasma proteomic profiles from 2,251 pan-cancer patient samples and investigate potential diagnostic biomarkers. Proteomic subtyping with different dominant tumour types links proteomic features and clinical indicators such as tumour stage. The highly immune-activated subtype, consisting of renal and bladder cancers, shows elevated glucose–insulin metabolism and reduced lipid metabolism. Comparison of the plasma proteome before and after surgery indicates that proteome patterns could be used to monitor post-surgery therapeutic effects. We also develop a binary classified model that distinguishes between tumour types and healthy controls, as well as a multicancer model for pan-cancer classification of proteins that could be useful biomarkers, and validate their performance in an independent cohort. In addition, we find that the plasma proteome, along with clinical indicators, whole blood cells and so on, can distinguish the pathological subtypes of specific tumour types. This study portrays a pan-cancer plasma proteomic landscape, providing information on plasma biomarkers that could help in discovering diagnostic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasma proteomic analyses of pan-cancer specimens.
Fig. 2: Proteomic classification reveals heterogeneity of pan-cancer.
Fig. 3: Differential plasma proteomes of different physiological system groups.
Fig. 4: Identification of specific tumour-derived plasma proteins.
Fig. 5: Integration of tissue and plasma proteomes.
Fig. 6: Immune infiltration in pan-cancer tumours.
Fig. 7: Short-term changes in the plasma proteome after surgery.
Fig. 8: Proteomic classifier to predict tumour patients.

Similar content being viewed by others

Data availability

Proteome raw data have been deposited in the ProteomeXchange Consortium (dataset identifier: PXD051137) via the iProX partner repository (https://www.iprox.cn/) under Project ID: IPX0003227000 (ref. 57). The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

All code for computational analyses were derived from publicly available websites and previous publications, and are cited in the corresponding Methods sections. The code used for this study is deposited in GitHub at https://doi.org/10.5281/zenodo.15179267 (ref. 58).

Change history

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    PubMed  Google Scholar 

  2. Gao, Q. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577.e22 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, J. Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Cao, L. et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 5031–5052.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong, L. et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 40, 70–87.e15 (2022).

  6. Ying, W. Phenomic studies on diseases: potential and challenges. Phenomics 3, 285–299 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Marrugo-Ramírez, J., Mir, M. & Samitier, J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci. 19, 2877 (2018).

  9. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

    Article  Google Scholar 

  10. Thierry, A. R., El Messaoudi, S., Gahan, P. B., Anker, P. & Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 35, 347–376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kilgour, E., Rothwell, D. G., Brady, G. & Dive, C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 37, 485–495 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Ren, L., Shi, L. & Zheng, Y. Reference materials for improving reliability of multiomics profiling. Phenomics 4, 487–521 (2024).

  13. Bronkhorst, A. J., Ungerer, V. & Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 17, 100087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhlén, M. et al. The human secretome. Sci. Signal. 12, eaaz0274 (2019).

  15. Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).

    Article  PubMed  Google Scholar 

  16. Tempero, M. A. et al. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 47, 5501–5503 (1987).

    CAS  PubMed  Google Scholar 

  17. Taketa, K. Alpha-fetoprotein: reevaluation in hepatology. Hepatology 12, 1420–1432 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nedelkov, D. Mass spectrometry-based immunoassays for the next phase of clinical applications. Expert Rev. Proteom. 3, 631–640 (2006).

    Article  CAS  Google Scholar 

  20. Chen, Y. M. et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 39, e105896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torsetnes, S. B. et al. Multiplexing determination of small cell lung cancer biomarkers and their isovariants in serum by immunocapture LC–MS/MS. Anal. Chem. 86, 6983–6992 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

    Article  PubMed  Google Scholar 

  23. Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225.e35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhong, Z. et al. Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res. 70, 2105–2114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng, F. et al. Chromium (VI) promotes EMT by regulating FLNA in BLCA. Environ. Toxicol. 36, 1694–1701 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ge, S. et al. A proteomic landscape of diffuse-type gastric cancer. Nat. Commun. 9, 1012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, C. et al. Integrated omics of metastatic colorectal cancer. Cancer Cell 38, 734–747.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. et al. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 8, 335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J. K. et al. Identifying diagnostic microRNAs and investigating their biological implications in rectal cancer. JAMA Netw. Open 4, e2136913 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang, N. et al. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. Biomed. Rep. 5, 107–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nicholson, A. G. et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J. Thorac. Oncol. 17, 362–387 (2022).

    Article  PubMed  Google Scholar 

  32. Kargl, J. et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 8, 14381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, C. H. et al. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. Oncogene 36, 3588–3598 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Felder, M. et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol. Cancer 13, 129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dochez, V. et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J. Ovarian Res. 12, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  37. Vilà, M. R., Nicolás, A., Morote, J., de, I. & Meseguer, A. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer 89, 152–164 (2000).

    Article  PubMed  Google Scholar 

  38. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

    Article  PubMed  Google Scholar 

  40. Hubler, M. J. & Kennedy, A. J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 34, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Vitale, C. et al. Venous thromboembolism and lung cancer: a review. Multidiscip. Respir. Med. 10, 28 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kattula, S., Byrnes, J. R. & Wolberg, A. S. Fibrinogen and fibrin in hemostasis and thrombosis. Arter. Thromb. Vasc. Biol. 37, e13–e21 (2017).

    Article  CAS  Google Scholar 

  43. Jiang, W., Pan, X., Yan, H. & Wang, G. Prognostic significance of the Hsp70 gene family in colorectal cancer. Med. Sci. Monit. 27, e928352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S. L. et al. in Heat Shock Protein-Based Therapies (eds Asea, A. A. A. et al.) 345–379 (Springer, 2015).

  45. Szymanski, J. J. et al. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLoS Med. 18, e1003734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Robinson, J. L., Feizi, A., Uhlén, M. & Nielsen, J. A systematic investigation of the malignant functions and diagnostic potential of the cancer secretome. Cell Rep. 26, 2622–2635.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ge, S. et al. Author Correction: A proteomic landscape of diffuse-type gastric cancer. Nat. Commun. 9, 1850 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–d361 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bai, L. et al. Cancer biomarkers discovered using pan-cancer plasma proteomic profiling. Datasets. ProteomeXchange https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD051137 (2025).

  58. Bai, L. et al. Cancer biomarkers discovered using pan-cancer plasma proteomic profiling. Source code. GitHub https://doi.org/10.5281/zenodo.15179267 (2025).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1303200 [C.D.], 2022YFA1303201 [C.D.] and 2023YFC2505900 [J.F.]), the National Natural Science Foundation of China (32330062 [C.D.], 31972933 [C.D.] and 82272166 [W.Y.]), sponsored by the Program of Shanghai Academic/Technology Research Leader (22XD1420100 [C.D.]), the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone (ZJ2019-ZD-004 [C.D.]), the Shanghai Municipal Science and Technology Major Project (2023SHZDZX02 [C.D.]), the Fudan Original Research Personalized Support Project [C.D.], Cultivation Project of Precision Medicine Joint Fund of Hebei Natural Science Foundation (H2022201044 [Y.J.]), Government-funded clinical talents Training Project of Hebei Province, Hebei Province ‘Three three Three Talent Project’ supported project (C20221002 [Y.J.]), the National Natural Science Foundation of China (82273792 [Y.J.]), Innovative team for precise care and rehabilitation of patients with cancer (IT2023C07 [Y.J.]), the Young Scientists Fund of the National Natural Science Foundation of China (32201215 [J.F.]), the National Ten Thousand Plan Young Top Talents [Y.Q.], the Natural Science Foundation of China (82172817 [Y.Q]), and the Shanghai ‘Science and Technology Innovation Action Plan’ medical innovation research project (22Y11905100 [Y.Q]). This work is supported by the Shanghai Municipal Science and Technology Major Project, the Human Phenome Data Center of Fudan university, and the Shanghai Phenomic precision measurement professional technical service platform (23DZ2290800).

Author information

Authors and Affiliations

Authors

Contributions

C.D., Y.J., W.Y., Y.L., D.Y. and L.B. conceived and planned the project. H.G., A.Z., W.D., H.Z., L.Z., Y.W., L.W., X.W., Y.L., J.L., X.Y., G.Z., D.L., X.G., Z.S., J.S. and W.G. were responsible for samples and clinical information collection. L.B., Z.X., T.J., P.R., S. Tian, S. Tan, Y.P. and L. Li. contributed to sample preparation. L.B., J. Lyu, J.F. and G.Y. analysed the data and contributed to the interpretation of the results. C.D. took the lead in writing the paper. All authors provided critical feedback and helped shape the research, analysis and paper.

Corresponding authors

Correspondence to Yongshi Liao, Dingwei Ye, Wenjun Yang, Youchao Jia or Chen Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Jens Nielsen, Karin D. Rodland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11.

Reporting Summary

Supplementary Data 1

Clinical characteristics of pan-cancer patients, and proteome data matrix used in the paper.

Supplementary Data 2

Plasma proteomic subtyping revealing heterogeneity of pan-cancer.

Supplementary Data 3

Differential plasma proteomes of different physiological system groups.

Supplementary Data 4

Specific plasma protein patterns distinguish different tumour types and subtypes.

Supplementary Data 5

Integration of tissue and plasma proteomes to nominate core tumour biomarkers.

Supplementary Data 6

Immune infiltration in pan-cancer tumours.

Supplementary Data 7

Short-term changes of the plasma proteome after surgery.

Supplementary Data 8

Machine learning-based model construction for binary and multitumour classification.

Source Data for Supplementary Figures

Statistical source data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Lyu, J., Feng, J. et al. Cancer biomarkers discovered using pan-cancer plasma proteomic profiling. Nat. Biomed. Eng 10, 16–38 (2026). https://doi.org/10.1038/s41551-025-01448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01448-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer