Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Steric stabilization-independent stealth cloak enables nanoreactors-mediated starvation therapy against refractory cancer

An Author Correction to this article was published on 26 November 2025

This article has been updated

Abstract

The high interfacial energy of nanomaterials limits their certain biomedical applications that require stealthiness to minimize non-specific interaction with biological components. While steric repulsion-based entropic stabilization—such as PEGylation—has long been the dominant strategy for designing stealth nanomaterials, its inherent softness and susceptibility to dynamic deformation and external forces often result in only moderate stealth performance. Here we report a distinct approach to achieving stealthiness by harnessing an ion-pair network, rather than maximizing steric repulsion. Using model polyion complex nanoparticles composed of equimolar charge ratios of polycations and polyanions, we demonstrate that increasing crosslinks between the constituent polyions beyond a critical threshold effectively reduces protein adsorption and macrophage uptake, enabling prolonged circulation with a half-life exceeding 100 hours. Building on this, we develop an asparaginase-loaded vesicular nanoreactor enveloped by a semi-permeable ion-pair network sheath for asparagine starvation therapy. The extended circulation of these nanoreactors enables sustained depletion of asparagine, leading to improved therapeutic outcomes for metastatic breast and pancreatic cancers. Our findings open an avenue for improving the pharmacokinetics of nanomaterials for therapeutic delivery through delicately engineering stable intermolecular structures with holistic cooperativity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro macrophage uptake and protein binding of PIC nanoparticles.
Fig. 2: Extended circulation behaviour of PIC nanoparticles.
Fig. 3: The stability of the ion-pair network.
Fig. 4: Proposed percolative ion-pair network and charge neutralization mechanism.
Fig. 5: In vivo nano–bio interaction of short-circulating nanoparticles.
Fig. 6: In vivo clearance of long-circulating nanoparticles.
Fig. 7: Therapeutic efficacy of asparaginase-loaded vesicular nanoreactor (ASNase@V) in metastatic breast cancer.
Fig. 8: Alleviation of desmoplasia by ASNase@V in pancreatic cancer and therapeutic efficacy in combination with immunotherapy.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. All data generated in this study, including source data for the figures, are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Change history

References

  1. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Yokoyama, M. et al. Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J. Control. Release 11, 269–278 (1990).

    Article  CAS  Google Scholar 

  4. Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Kataoka, K., Kwon, G. S., Yokoyama, M., Okano, T. & Sakurai, Y. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 24, 119–132 (1993).

    Article  CAS  Google Scholar 

  6. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. McPherson, T. B., Lee, S. J. & Park, K. Analysis of the prevention of protein adsorption by steric repulsion theory. ACS Symp. Ser. 602, 395–404 (1995).

    Article  CAS  Google Scholar 

  8. Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55, 403–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 4, 59–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu, Y. et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishiyama, N., Kato, Y., Sugiyama, Y. & Kataoka, K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18, 1035–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nishiyama, N. et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63, 8977–8983 (2003).

    CAS  PubMed  Google Scholar 

  13. Cabral, H., Nishiyama, N., Okazaki, S., Koyama, H. & Kataoka, K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J. Control. Release 101, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Fox, M. E., Szoka, F. C. & Frechet, J. M. J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tockary, T. A. et al. Tethered PEG crowdedness determining shape and blood circulation profile of polyplex micelle gene carriers. Macromolecules 46, 6585–6592 (2013).

    Article  CAS  Google Scholar 

  19. Yang, Q. et al. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 11, 1250–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).

    Article  CAS  Google Scholar 

  23. Wen, P. et al. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 198, 114895 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Record, M. T., Anderson, C. F. & Lohman, T. M. Thermodynamic analysis of ion effects on binding and conformational equilibria of proteins and nucleic acids: roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11, 103–178 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Norde, W. Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci. 25, 267–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Norde, W. Protein adsorption at solid surfaces: a thermodynamic approach. Pure Appl. Chem. 66, 491–496 (1994).

    Article  CAS  Google Scholar 

  27. Hoffman, A. S. Non-fouling surface technologies. J. Biomater. Sci. Polym. Ed. 10, 1011–1014 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Vogler, E. A. Water and the acute biological response to surfaces. J. Biomater. Sci. Polym. Ed. 10, 1015–1045 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Achazi, K. et al. Understanding the interaction of polyelectrolyte architectures with proteins and biosystems. Angew. Chem. Int. Ed. 60, 3882–3904 (2021).

    Article  CAS  Google Scholar 

  30. Olive, K. P. et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koide, A. et al. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc. 128, 5988–5989 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Rocker, C., Potzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  PubMed  Google Scholar 

  33. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haroon, H. B., Hunter, A. C., Farhangrazi, Z. S. & Moghimi, S. M. A brief history of long circulating nanoparticles. Adv. Drug Deliv. Rev. 188, 114396 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Z. M., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kong, S. M., Costa, D. F., Jagielska, A., Van Vliet, K. J. & Hammond, P. T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl Acad. Sci. USA 118, e2104826118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kríz, J., Dautzenberg, H., Dybal, J. & Kurková, D. Competitive/cooperative electrostatic interactions in macromolecular complexes: multinuclear NMR study of PDADMAC-PMANa complexes in the presence of Al ions. Langmuir 18, 9594–9599 (2002).

    Article  Google Scholar 

  39. Kríz, J. & Dautzenberg, H. Cooperative interactions of unlike macromolecules 2: NMR and theoretical study of electrostatic binding of sodium poly(styrenesulfonate)s to copolymers with variably distributed cationic groups. J. Phys. Chem. A 105, 3846–3854 (2001).

    Article  Google Scholar 

  40. Mutaf, O. F., Anraku, Y., Kishimura, A. & Kataoka, K. Unilamellar polyion complex vesicles (PICsomes) with tunable permeabilities for macromolecular solutes with different shapes and sizes. Polymer 133, 1–7 (2017).

    Article  CAS  Google Scholar 

  41. Klotz, I. M. Ligand-receptor complexes: origin and development of the concept. J. Biol. Chem. 279, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Li, Q. S. et al. Zwitterionic biomaterials. Chem. Rev. 122, 17073–17154 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Nishida, K., Anada, T. & Tanaka, M. Roles of interfacial water states on advanced biomedical material design. Adv. Drug Deliv. Rev. 186, 114310 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Kataoka, K., Tsuruta, T., Akaike, T. & Sakurai, Y. Biomedical behavior of synthetic polyion complexes toward blood platelets. Makromol. Chem. 181, 1363–1373 (1980).

    Article  CAS  Google Scholar 

  45. Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  46. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wada, A. & Nakamura, H. Nature of the charge distribution in proteins. Nature 293, 757–758 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura, H. Roles of electrostatic interaction in proteins. Q. Rev. Biophys. 29, 1–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, S. K., Wang, Y. Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Ladd, J., Zhang, Z., Chen, S., Hower, J. C. & Jiang, S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9, 1357–1361 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Delgado, J. D. & Schlenoff, J. B. Static and dynamic solution behavior of a polyzwitterion using a Hofmeister salt series. Macromolecules 50, 4454–4464 (2017).

    Article  CAS  Google Scholar 

  52. Li, S. D. et al. Tumor microenvironment-tailored weakly cell-interacted extracellular delivery platform enables precise antibody release and function. Adv. Funct. Mater. 29, 1903296 (2019).

    Article  CAS  Google Scholar 

  53. Zhang, L. L. et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 9, 2424–2432 (2016).

    Article  CAS  Google Scholar 

  54. Huang, C. & Mason, J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc. Natl Acad. Sci. USA 75, 308–310 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allen, C. et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 22, 225–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Tirosh, O., Barenholz, Y., Katzhendler, J. & Priev, A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 74, 1371–1379 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garbuzenko, O., Barenholz, Y. & Priev, A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 135, 117–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Arnold, K., Herrmann, A., Pratsch, L. & Gawrisch, K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815, 515–518 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Sorensen, K. K., Simon-Santamaria, J., McCuskey, R. S. & Smedsrod, B. Liver sinusoidal endothelial cells. Compr. Physiol. 5, 1751–1774 (2015).

    Article  PubMed  Google Scholar 

  60. Dirisala, A. et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 6, eabb8133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, K. et al. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat. Commun. 15, 6136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sueyoshi, D., Anraku, Y., Komatsu, T., Urano, Y. & Kataoka, K. Enzyme-loaded polyion complex vesicles as in vivo nanoreactors working sustainably under the blood circulation: characterization and functional evaluation. Biomacromolecules 18, 1189–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Anraku, Y., Kishimura, A., Yamasaki, Y. & Kataoka, K. Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J. Am. Chem. Soc. 135, 1423–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Anraku, Y. et al. Systemically injectable enzyme-loaded polyion complex vesicles as in vivo nanoreactors functioning in tumors. Angew. Chem. Int. Ed. 55, 560–565 (2016).

    Article  CAS  Google Scholar 

  66. Li, J., Anraku, Y. & Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem. Int. Ed. 59, 13526–13530 (2020).

    Article  CAS  Google Scholar 

  67. Chen, H. et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J. Am. Chem. Soc. 136, 157–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Wen, P. et al. Engineering durable antioxidative nanoreactors as synthetic organelles for autoregulatory cellular protection against oxidative stress. J. Control. Release 382, 113683 (2025).

    Article  CAS  PubMed  Google Scholar 

  69. Dufour, E. et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas 41, 940–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Chiu, M., Taurino, G., Bianchi, M. G., Kilberg, M. S. & Bussolati, O. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front. Oncol. 9, 1480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lomelino, C. L., Andring, J. T., McKenna, R. & Kilberg, M. S. Asparagine synthetase: function, structure, and role in disease. J. Biol. Chem. 292, 19952–19958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keating, M. J., Holmes, R., Lerner, S. & Ho, D. H. L-Asparaginase and PEG asparaginase—past, present, and future. Leuk. Lymphoma 10, 153–157 (1993).

    Article  PubMed  Google Scholar 

  73. Xiao, Y. et al. Emerging therapies in cancer metabolism. Cell Metab. 35, 1283–1303 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Pieters, R. et al. L-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 117, 238–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Gabriel, A. N. A. et al. Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology 20, 79–88 (2020).

    Article  Google Scholar 

  78. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, J. et al. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer. ACS Nano 12, 9881–9893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bear, A. S., Vonderheide, R. H. & O’Hara, M. H. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 38, 788–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Löhr, M. et al. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 61, 550–555 (2001).

    PubMed  Google Scholar 

  86. Krall, A. S., Xu, S., Graeber, T. G., Braas, D. & Christofk, H. R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 7, 11457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rassolian, M., Chass, G. A., Setiadi, D. H. & Csizmadia, I. G. Asparagine—ab initio structural analyses. J. Mol. Struct. THEOCHEM 666-667, 273–278 (2003).

    Article  CAS  Google Scholar 

  88. Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kano, M. R. et al. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 100, 173–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin, J. D. et al. Dexamethasone increases cisplatin-loaded nanocarrier delivery and efficacy in metastatic breast cancer by normalizing the tumor microenvironment. ACS Nano 13, 6396–6408 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Panagi, M. et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics 10, 1910–1922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mpekris, F. et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv. Sci. 8, 2001917 (2021).

    Article  CAS  Google Scholar 

  94. Qin, M. M., Feng, Z. H. & Meng, H. Enhanced transcytosis and retention (ETR) effect. Sci. Bull. 69, 3640–3643 (2024).

    Article  Google Scholar 

  95. Tallal, L. et al. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer 25, 306–320 (1970).

    Article  CAS  PubMed  Google Scholar 

  96. Clarkson, B. et al. Clinical results of treatment with E. coli L-asparaginase in adults with leukemia, lymphoma, and solid tumors. Cancer 25, 279–305 (1970).

    Article  CAS  PubMed  Google Scholar 

  97. Hammel, P. et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: an open-label, randomized phase IIb trial. Eur. J. Cancer 124, 91–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2, 1–19 (2010).

    Article  Google Scholar 

  99. Mononen, I. T., Kaartinen, V. M. & Williams, J. C. A fluorometric assay for glycosylasparaginase activity and detection of aspartylglycosaminuria. Anal. Biochem. 208, 372–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Szoka, F. & Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA 75, 4194–4198 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the Japan Science and Technology Agency (JST) through the Center of Innovation (COI) Program (JPMJCE1305 to K.K.) and the Open Innovation Platform for Industry-Academia Co-creation (COI-NEXT) Program (JPMJPF2202 to H.K. and K.K.), Grants-in-Aid for Early-Career Scientist (20K20209 to J.L.) and Scientific Research (B) (23H03740 to J.L.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)/the Japan Society for the Promotion of Science (JSPS), and the JSPS International Research Fellowship (J.L., P17356; K.K. as the host researcher). This work was partially supported by Grants-in-Aid for Scientific Research (19H05720 and 22H00591 to M.T., 24K21109 to P.W.) from MEXT/JSPS and a grant for young researchers from the Hirose Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and K.K. conceived of the ideas. J.L. designed and performed the experiments and analysed the data. J.L. prepared the figures and wrote the paper with input from all authors. P.W. helped with the preparation of PIC nanoparticles and in vitro investigation. K.T. and J.L. independently repeated intravital microscopic observation. J.F.R.V.G. helped with the NMR spectroscopic characterization. X.L. helped with the collection of blood and organs and the evaluation of antitumour efficacy. A.D., P.W., H.G. and H.C. contributed to the evaluation and discussion of biodistribution. Y.M. contributed to the inductively coupled plasma mass spectroscopy measurements. S.A. helped with the preparation of liposomes. H.K. helped with the flow cytometry measurements. Y.M. and Y.A. supplied some polymers. M.T. contributed to the discussion on the hydration effect. K.K. commented on the paper. J.L. and K.K. revised the paper. K.K. and J.L. supervised the project.

Corresponding authors

Correspondence to Junjie Li or Kazunori Kataoka.

Ethics declarations

Competing interests

The patent application (PCT/JP2023/37954) related to this work has been filed (J.L. and K.K.). The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Martina Stenzel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Table 1 and legends for Videos 1–6.

Reporting Summary

Peer Review File

Supplementary Video 1

Schematic illustration demonstrating the correlation between the stability of the ion-pair network sheath and nano–bio interactions.

Supplementary Video 2

IVRTCLSM imaging of blood vessels in the mouse ear dermis after injection of Cy5-labelled dePEGylated vesicles with 32.6% crosslinking (red).

Supplementary Video 3

IVRTCLSM imaging of the bloodstream FRET profile of Cy3/Cy5-co-labelled M39.5% nanoparticles in mouse ear dermis blood vessels. Stable FRET signal is demonstrated by a consistent Cy5/Cy3 ratio (yellow) in the imaging.

Supplementary Video 4

IVRTCLSM imaging of liver tissue after injection of Cy5-labelled dePEGylated vesicles with 32.6% crosslinking (red). The green fluorescence represents auto-fluorescence from liver parenchyma.

Supplementary Video 5

IVRTCLSM imaging of liver tissue after injection of Cy5-labelled M39.5% nanoparticles (red).

Supplementary Video 6

IVRTCLSM imaging of liver tissue after injection of Cy5-labelled V30.3% nanoparticles (red).

Supplementary Data

Source data for figures in the Supplementary Information.

Source data

Source Data Figs. 1–8

Statistical source data for Figs. 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Toh, K., Wen, P. et al. Steric stabilization-independent stealth cloak enables nanoreactors-mediated starvation therapy against refractory cancer. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01534-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer