Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inferring multi-organ genetic connections using imaging and clinical data through Mendelian randomization

Abstract

Understanding the complex relationships among major clinical outcomes and the interplay among multiple organs remains a considerable challenge. By using imaging phenotypes, we can characterize the functional and structural architecture of major human organs. Mendelian randomization (MR) provides a valuable framework for uncovering robust relationships between phenotypes by leveraging genetic variants as instrumental variables. Here we conduct a systematic multi-organ MR analysis involving 402 imaging traits and 372 clinical outcomes. Our analysis reveals 184 MR associations for 58 diseases and 56 imaging traits across various organs, tissues and systems, including the brain, heart, liver, kidney, lung, pancreas, spleen, adipose tissue and skeletal system. We identify intra-organ MR connections, such as the putative bidirectional genetic links between Alzheimer’s disease and brain function, and interorgan associations, such as heart diseases and brain health. Metabolic disorders, such as diabetes, show genetically rooted putative MR effects across multiple organs. These findings shed light on the genetic links spanning multiple organs, providing targets for future mechanistic follow-up for clinical disease research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of study design and findings.
Fig. 2: Selected MR associations between clinical outcomes and brain imaging traits.
Fig. 3: Selected MR associations between clinical endpoints and heart imaging traits.
Fig. 4: Selected MR associations between clinical endpoints and abdominal imaging traits.
Fig. 5: Selected MR associations between clinical endpoints and skeleton imaging traits.

Similar content being viewed by others

Data availability

We used summary-level GWAS data in this study, which can be obtained from the FinnGen project (https://www.finngen.fi/en/access_results), BIG-KP (https://bigkp.org/) and Heart-KP (https://heartkp.org/), and project-specific resources are detailed in refs. 3 and 8.

Code availability

We used publicly available software and tools. Our analysis code is available on Zenodo at https://doi.org/10.5281/zenodo.16518650 (ref. 149).

References

  1. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pennell, D. J. et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur. Heart J. 25, 1940–1965 (2004).

    Article  PubMed  Google Scholar 

  3. Kun, E. et al. The genetic architecture and evolution of the human skeletal form. Science 381, eadf8009 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18, 8 (2015).

    Article  Google Scholar 

  5. Littlejohns, T. J., Sudlow, C., Allen, N. E. & Collins, R. UK Biobank: opportunities for cardiovascular research. Eur. Heart J. 40, 1158–1166 (2019).

    Article  PubMed  Google Scholar 

  6. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson, P.M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. et al. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. eLife 10, e65554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, S. M. & Nichols, T. E. Statistical challenges in ‘big data’ human neuroimaging. Neuron 97, 263–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Taschler, B., Smith, S.M. & Nichols, T.E. Causal inference on neuroimaging data with Mendelian randomisation. NeuroImage 258, 119385 (2022).

    Article  PubMed  Google Scholar 

  12. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim. 2, 6 (2022).

    Article  CAS  Google Scholar 

  13. Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Aung, N. et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 140, 1318–1330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Córdova-Palomera, A. et al. Cardiac imaging of aortic valve area from 34,287 UK Biobank participants reveals novel genetic associations and shared genetic comorbidity with multiple disease phenotypes. Circ. Genom. Precis. Med. 13, e003014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meyer, H. V. et al. Genetic and functional insights into the fractal structure of the heart. Nature 584, 589–594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pirruccello, J. P. et al. Genetic analysis of right heart structure and function in 40,000 people. Nat. Genet. 54, 792–803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thanaj, M. et al. Genetic and environmental determinants of diastolic heart function. Nat. Cardiovasc. Res. 1, 361–371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).

  24. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, B. et al. Genetic influences on the intrinsic and extrinsic functional organizations of the cerebral cortex. Preprint at medRxiv https://doi.org/10.1101/2021.07.27.21261187 (2021).

  26. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flynn, B. I. et al. Deep learning based phenotyping of medical images improves power for gene discovery of complex disease. npj Digit. Med. 6, 155 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guo, J. et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat. Neurosci. 25, 1519–1527 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X. et al. Kidney damage causally affects the brain cortical structure: a Mendelian randomization study. eBioMedicine 72, 103592 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Williams, J. A. et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiatry 79, 498–507 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Topiwala, A. et al. Associations between moderate alcohol consumption, brain iron, and cognition in UK Biobank participants: observational and mendelian randomization analyses. PLoS Med. 19, e1004039 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lamina, C. & Kronenberg, F. Estimation of the required lipoprotein (a)-lowering therapeutic effect size for reduction in coronary heart disease outcomes: a Mendelian randomization analysis. JAMA Cardiol. 4, 575–579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Skou, S. T. et al. Multimorbidity. Nat. Rev. Dis. Prim. 8, 48 (2022).

    Article  PubMed  Google Scholar 

  36. Langenberg, C., Hingorani, A. D. & Whitty, C. J. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bijsterbosch, J. et al. Investigations into within-and between-subject resting-state amplitude variations. NeuroImage 159, 57–69 (2017).

    Article  PubMed  Google Scholar 

  39. Bai, W. et al. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med. 26, 1654–1662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, B. et al. Heart-brain connections: phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bowden, J. et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J. Epidemiol. 48, 728–742 (2019).

    Article  PubMed  Google Scholar 

  44. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ye, T., Shao, J. & Kang, H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. Ann. Stat. 49, 2079–2100 (2021).

    Article  Google Scholar 

  48. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 48, 1742–1769 (2020).

    Article  Google Scholar 

  49. Wang, J. et al. Causal inference for heritable phenotypic risk factors using heterogeneous genetic instruments. PLoS Genet. 17, e1009575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V. & Howard, J. H. Jr Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum. Brain Mapp. 31, 378–390 (2010).

    Article  PubMed  Google Scholar 

  51. Cerqueira, M. D.et al.; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002).

    Article  PubMed  Google Scholar 

  52. Stratos, C., Stefanadis, C., Kallikazaros, I., Boudoulas, H. & Toutouzas, P. Ascending aorta distensibility abnormalities in hypertensive patients and response to nifedipine administration. Am. J. Med. 93, 505–512 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Asmar, R. et al. Aortic distensibility in normotensive, untreated and treated hypertensive patients. Blood Press. 4, 48–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Nabati, M., Namazi, S. S., Yazdani, J. & Sharif Nia, H. Relation between aortic stiffness index and distensibility with age in hypertensive patients. Int. J. Gen. Med.13, 297–303 (2020).

  55. Berman, M. N., Tupper, C. & Bhardwaj, A. in StatPearls (StatPearls Publishing, 2022).

  56. Kim, D.-Y. & Camilleri, M. Serotonin: a mediator of the brain–gut connection. Am. J. Gastroenterol. 95, 2698–2709 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Jones, M., Dilley, J., Drossman, D. & Crowell, M. Brain–gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol. Motil. 18, 91–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Keefer, L. et al. A Rome working team report on brain–gut behavior therapies for disorders of gut–brain interaction. Gastroenterology 162, 300–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Xie, Z., Tong, S., Chu, X., Feng, T. & Geng, M. Chronic kidney disease and cognitive impairment: the kidney–brain axis. Kidney Dis. 8, 275–285 (2022).

    Article  Google Scholar 

  60. de Donato, A., Buonincontri, V., Borriello, G., Martinelli, G. & Mone, P. The dopamine system: insights between kidney and brain. Kidney Blood Press. Res. 47, 493–505 (2022).

    Article  PubMed  Google Scholar 

  61. McCracken, C. et al. Multi-organ imaging demonstrates the heart–brain–liver axis in UK Biobank participants. Nat. Commun. 13, 7839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Walker, V. M., Zheng, J., Gaunt, T. R. & Smith, G. D. Phenotypic causal inference using genome-wide association study data: Mendelian randomization and beyond. Annu. Rev. Biomed. Data Sci. 5, 1–17 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jaggi, A. et al. A structural heart–brain axis mediates the association between cardiovascular risk and cognitive function. Imaging Neurosci. 2, imag-2-00063 (2024).

    Article  Google Scholar 

  65. Berridge, K. C. & Kringelbach, M. L. Pleasure systems in the brain. Neuron 86, 646–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  67. Wang, K. et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum. Brain Mapp. 28, 967–978 (2007).

    Article  PubMed  Google Scholar 

  68. Sorg, C. et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 104, 18760–18765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ranasinghe, K. G. et al. Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum. NeuroImage Clin. 5, 385–395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pini, L. et al. A low-dimensional cognitive-network space in Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Res. Ther. 14, 199 (2022).

    Article  Google Scholar 

  71. Torso, M. et al. In vivo cortical diffusion imaging relates to Alzheimer’s disease neuropathology. Alzheimer’s Res. Ther. 15, 165 (2023).

    Article  CAS  Google Scholar 

  72. Tu, M.-C. et al. Joint diffusional kurtosis magnetic resonance imaging analysis of white matter and the thalamus to identify subcortical ischemic vascular disease. Sci. Rep. 14, 2570 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, W. et al. Brain–heart communication in health and diseases. Brain Res. Bull. 183, 27–37 (2022).

  74. Walker, K. A., Power, M. C. & Gottesman, R. F. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr. Hypertens. Rep. 19, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang, H. et al. Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study. Am. J. Neuroradiol. 34, 334–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, C., Hawkins, K. E., Doré, S. & Candelario-Jalil, E. Neuroinflammatory mechanisms of blood–brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol. 316, C135–C153 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Carnevale, D. et al. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol. Aging 33, 205.e219–205.e229 (2012).

    Article  Google Scholar 

  78. Haspula, D. & Clark, M. A. Neuroinflammation and sympathetic overactivity: mechanisms and implications in hypertension. Auton. Neurosci. 210, 10–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Niedermeyer, E. Alzheimer disease: caused by primary deficiency of the cerebral blood flow. Clin. EEG Neurosci. 37, 175–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chu, B., Marwaha, K., Sanvictores, T. & Ayers, D. in StatPearls (StatPearls Publishing, 2021).

  83. Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Colao, A., Marzullo, P., Di Somma, C. & Lombardi, G. Growth hormone and the heart. Clin. Endocrinol. 54, 137–154 (2001).

    Article  CAS  Google Scholar 

  85. Fazio, S. et al. Growth hormone and heart performance: a novel mechanism of cardiac wall stress regulation in humans. Eur. Heart J. 18, 340–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Black, P. H. & Garbutt, L. D. Stress, inflammation and cardiovascular disease. J. Psychosom. Res. 52, 1–23 (2002).

    Article  PubMed  Google Scholar 

  87. Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83, 456S–460S (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Holmes, C. Systemic inflammation and A lzheimer’s disease. Neuropathol. Appl. Neurobiol. 39, 51–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Laleman, W., Claria, J., Van der Merwe, S., Moreau, R. & Trebicka, J. Systemic inflammation and acute-on-chronic liver failure: too much, not enough. Can. J. Gastroenterol. Hepatol. 2018, 1027152 (2018).

  90. Scherder, E. J., Bogen, T., Eggermont, L. H., Hamers, J. P. & Swaab, D. F. The more physical inactivity, the more agitation in dementia. Int. Psychogeriatr. 22, 1203–1208 (2010).

    Article  PubMed  Google Scholar 

  91. Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Polkey, M. I., Lyall, R. A., Moxham, J. & Leigh, P. N. Respiratory aspects of neurological disease. J. Neurol. Neurosurg. Psychiatry 66, 5–15 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pollock, R. D., Rafferty, G. F., Moxham, J. & Kalra, L. Respiratory muscle strength and training in stroke and neurology: a systematic review. Int. J. Stroke 8, 124–130 (2013).

    Article  PubMed  Google Scholar 

  94. Kushner, T. & Cafardi, J. Chronic liver disease and COVID-19: alcohol use disorder/alcohol-associated liver disease, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, autoimmune liver disease, and compensated cirrhosis. Clin. Liver Dis. 15, 195 (2020).

    Article  Google Scholar 

  95. Rhyou, H.-I. & Nam, Y.-H. Association between cognitive function and asthma in adults. Ann. Allergy Asthma Immunol. 126, 69–74 (2021).

    Article  PubMed  Google Scholar 

  96. Ray, M., Sano, M., Wisnivesky, J. P., Wolf, M. S. & Federman, A. D. Asthma control and cognitive function in a cohort of elderly adults. J. Am. Geriatrics Soc. 63, 684–691 (2015).

    Article  Google Scholar 

  97. Alvarez, J. I., Cayrol, R. & Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochimic. Biophys. Acta 1812, 252–264 (2011).

    Article  CAS  Google Scholar 

  98. Krupp, L. B. et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult. Scler. J. 19, 1261–1267 (2013).

    Article  Google Scholar 

  99. Huda, S. et al. Neuromyelitis optica spectrum disorders. Clin. Med. 19, 169 (2019).

    Article  Google Scholar 

  100. Kim, W., Kim, S.-H., Huh, S.-Y. & Kim, H. J. Brain abnormalities in neuromyelitis optica spectrum disorder. Mult. Scler. Int. 2012, 735486 (2012).

  101. Lancaster, E. The diagnosis and treatment of autoimmune encephalitis. J. Clin. Neurol. 12, 1–13 (2016).

    Article  PubMed  Google Scholar 

  102. Wartolowska, K. et al. Structural changes of the brain in rheumatoid arthritis. Arthritis Rheum. 64, 371–379 (2012).

    Article  PubMed  Google Scholar 

  103. Kozora, E. & Filley, C. M. Cognitive dysfunction and white matter abnormalities in systemic lupus erythematosus. J. Int. Neuropsychol. Soc. 17, 385–392 (2011).

    Article  PubMed  Google Scholar 

  104. Appenzeller, S. et al. Longitudinal analysis of gray and white matter loss in patients with systemic lupus erythematosus. NeuroImage 34, 694–701 (2007).

    Article  PubMed  Google Scholar 

  105. Rosenberg, G. A. Inflammation and white matter damage in vascular cognitive impairment. Stroke 40, S20–S23 (2009).

    Article  PubMed  Google Scholar 

  106. Raj, D. et al. Increased white matter inflammation in aging-and Alzheimer’s disease brain. Front. Mol. Neurosci. 10, 206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gerdts, E. et al. Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Hypertension 39, 739–743 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Eshoo, S., Ross, D. L. & Thomas, L. Impact of mild hypertension on left atrial size and function. Circ. Cardiovasc. Imaging 2, 93–99 (2009).

    Article  PubMed  Google Scholar 

  109. Sanfilippo, A. J. et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82, 792–797 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Saheera, S. & Krishnamurthy, P. Cardiovascular changes associated with hypertensive heart disease and aging. Cell Transplant. 29, 963689720920830 (2020).

    Article  PubMed  Google Scholar 

  111. Hiraiwa, H. et al. Clinical significance of spleen size in patients with heart failure. Eur. Heart J. 42, ehab724.0756 (2021).

    Article  Google Scholar 

  112. Ormazabal, V. et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 17, 122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shah, A., Mehta, N. & Reilly, M. P. Adipose inflammation, insulin resistance, and cardiovascular disease. J. Parenter. Enter. Nutr. 32, 638–644 (2008).

    Article  CAS  Google Scholar 

  114. Boudina, S. & Abel, E. D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 11, 31–39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Horton, W. B. & Barrett, E. J. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr. Rev. 42, 29–55 (2021).

    Article  PubMed  Google Scholar 

  116. Kibel, A. et al. Coronary microvascular dysfunction in diabetes mellitus. J. Int. Med. Res. 45, 1901–1929 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fuentes-Antrás, J. et al. Targeting metabolic disturbance in the diabetic heart. Cardiovasc. Diabetol. 14, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wagner, R. et al. Metabolic implications of pancreatic fat accumulation. Nat. Rev. Endocrinol. 18, 43–54 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Yaney, G. C. & Corkey, B. E. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 46, 1297–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Dludla, P. V. et al. Pancreatic beta-cell dysfunction in type 2 diabetes: implications of inflammation and oxidative stress. World J. Diabetes 14, 130–146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kocaturk, E., Kar, E., Kusku Kiraz, Z. & Alatas, O. Insulin resistance and pancreatic beta cell dysfunction are associated with thyroid hormone functions: a cross-sectional hospital-based study in Turkey. Diabetes Metab. Syndr. 14, 2147–2151 (2020).

    Article  PubMed  Google Scholar 

  122. Meeks, K. A. C., Adeyemo, A. & Agyemang, C. Beta-cell dysfunction and insulin resistance in relation to abnormal glucose tolerance in African populations: can we afford to ignore the diversity within African populations? BMJ Open Diabetes Res. Care 10, e002685 (2022).

  123. Bonora, E. et al. Insulin resistance and beta-cell dysfunction in newly diagnosed type 2 diabetes: expression, aggregation and predominance. Verona Newly Diagnosed Type 2 Diabetes Study 10. Diabetes Metab. Res Rev. 38, e3558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Whalen, R., Carter, D. & Steele, C. Influence of physical activity on the regulation of bone density. J. Biomech. 21, 825–837 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 40, 5434–5452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhao, Q., Wang, J., Spiller, W., Bowden, J. & Small, D. S. Two-sample instrumental variable analyses using heterogeneous samples. Stat. Sci. 34, 317–333 (2019).

    Article  Google Scholar 

  127. Cui, R. et al. Improving fine-mapping by modeling infinitesimal effects. Nat. Genet. 56, 162–169 (2024).

  128. Xue, H., Shen, X. & Pan, W. Causal inference in transcriptome-wide association studies with invalid instruments and GWAS summary data. J. Am. Stat. Assoc.118, 1525–1537 (2023).

  129. Hu, X. et al. Benchmarking Mendelian randomization methods for causal inference using genome-wide association study summary statistics. Am. J. Hum. Genet 111, 1717–1735 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Richmond, R. C. & Smith, G. D. Mendelian randomization: concepts and scope. Cold Spring Harb. Perspect. Med. 12, a040501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tseng, W. Y., Su, M. Y. & Tseng, Y. H. Introduction to cardiovascular magnetic resonance: technical principles and clinical applications. Acta Cardiol. Sin. 32, 129–144 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Pennell, D. J. Cardiovascular magnetic resonance. Circulation 121, 692–705 (2010).

    Article  PubMed  Google Scholar 

  133. Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bai, W. et al. Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In Proc. Medical Image Computing and Computer Assisted InterventionMICCAI 2018 (eds Frangi, A. et al.) 586–594 (2018).

  135. Zhao, B. et al. Heritability of regional brain volumes in large-scale neuroimaging and genetic studies. Cereb. Cortex 29, 2904–2914 (2019).

    Article  PubMed  Google Scholar 

  136. Zhao, B. et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol. Psychiatry 26, 3943–3955 (2021).

    Article  PubMed  Google Scholar 

  137. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).

    Article  PubMed  Google Scholar 

  138. Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. NeuroImage 81, 455–469 (2013).

    Article  PubMed  Google Scholar 

  139. Kochunov, P. et al. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and megaanalytical approaches for data pooling. NeuroImage 95, 136–150 (2014).

    Article  PubMed  Google Scholar 

  140. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ji, J. L. et al. Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage 185, 35–57 (2019).

    Article  PubMed  Google Scholar 

  142. Deng, L., Zhang, H. & Yu, K. Power calculation for the general two-sample Mendelian randomization analysis. Genet Epidemiol. 44, 290–299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Burton, P. R.et al.; Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Verma, A. et al. Diversity and scale: genetic architecture of 2,068 traits in the VA Million Veteran Program. Science 385, eadj1182 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Zhu, Z. et al. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis. Respir. Res 20, 64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shu, J. MOMR_code. Zenodo https://doi.org/10.5281/zenodo.16518650 (2025).

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Mental Health under award number R01MH136055 (B.Z.) and National Institute on Aging under award numbers RF1AG082938 (B.Z. and H.Z.) and R01AG085581 (B.Z. and H.Z.). Assistance for this project was provided by the UNC Intellectual and Developmental Disabilities Research Center (NICHD; P50 HD103573; H.Z.), and by grants RF1AG098697 (H.Z.), R01AR082684 (H.Z.), OT2OD038045-01 (H.Z.) and K01AG095286 (T.L.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The study has also been partially supported by funding from the Purdue University Statistics Department, Department of Statistics and Data Science at the University of Pennsylvania, Wharton Dean’s Research Fund, Analytics at Wharton, Wharton AI and Analytics Initiative, Perelman School of Medicine CCEB Innovation Center Grant and the University Research Foundation Grant (B.Z.). This research has been conducted using summary-level data from the UKB study and the FinnGen research project. We thank the individuals who participated in the UKB and FinnGen studies for their contribution and the research teams for their efforts in collecting, processing and disseminating these datasets. We thank the research computing groups at the University of North Carolina at Chapel Hill, Purdue University and the Wharton School of the University of Pennsylvania for providing computational resources and support that have contributed to these research results.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and B.Z. designed the study. J.S., C.C., B.L., Z.F., X.Y., Y.Y, X.W. and Y.L. analysed the data. R.Z. and J.C. helped interpret the findings. B.X., T.L. and H.Z. provided feedback on the results. J.S. and B.Z. wrote the paper with feedback from all authors.

Corresponding authors

Correspondence to Hongtu Zhu or Bingxin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Marios Georgakis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–14 and legends for Tables 1–17.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–17 provide data descriptions and detailed MR results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, J., Zheng, R., Chirinos, J. et al. Inferring multi-organ genetic connections using imaging and clinical data through Mendelian randomization. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01554-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing