Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice

Abstract

Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature. Here we engineer IL-10 to overcome these challenges by hitchhiking on LDL to atherosclerotic plaques. Specifically, we construct Fab-IL-10 by fusing IL-10 to the antibody fragment (Fab) of four different oxidized LDL-binding antibodies. We show that systemically administered Fab-IL-10 constructs bind circulating LDL and traffic to atherosclerotic plaques in atherosclerosis mouse models. Among them, 2D03-IL-10 significantly reduces aortic immune cell infiltration to levels comparable to healthy mice, whereas non-targeted IL-10 has no therapeutic effect. Mechanistically, we demonstrate that 2D03-IL-10 preferentially associates with foamy macrophages and reduces pro-inflammatory activation markers. This modular technology may be applied to a variety of protein therapeutics and shows promise as a potential targeted anti-inflammatory therapy in atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fusing IL-10 to an LDL-binding antibody fragment enables lipoprotein binding while maintaining signalling and anti-inflammatory properties.
Fig. 2: Fab-IL-10 constructs have increased plasma half-lives and tissue bioavailability in apoE−/− mice fed HFD for 10 weeks.
Fig. 3: 2D03-IL-10 reduces immune cell infiltration into the aorta of apoE−/− mice fed HFD.
Fig. 4: 2D03-IL-10 binds immune cells and co-localizes with foamy macrophages.
Fig. 5: 2D03-IL-10 binding to LDL is generalizable to multiple contexts.

Similar content being viewed by others

Data availability

Source data for the main results of this study are available in the Supplementary Information. Additional unprocessed data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Valanti, E.-K. et al. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 116, 154461 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Hetherington, I. & Totary-Jain, H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol. Ther. 30, 3106–3117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meza-Contreras, A. et al. Statin intolerance management: a systematic review. Endocrine 79, 430–436 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Banach, M., Stulc, T., Dent, R. & Toth, P. P. Statin non-adherence and residual cardiovascular risk: there is need for substantial improvement. Int. J. Cardiol. 225, 184–196 (2016).

    Article  PubMed  Google Scholar 

  5. Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaidai, O., Cao, Y. & Loginov, S. Global cardiovascular diseases death rate prediction. Curr. Probl. Cardiol. 48, 101622 (2023).

  7. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  8. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Libby, P. Inflammation in atherosclerosis—no longer a theory. Clin. Chem. 67, 131–142 (2021).

    Article  PubMed  Google Scholar 

  10. Orekhov, A. N. LDL and foam cell formation as the basis of atherogenesis. Curr. Opin. Lipidol. 29, 279–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, Y., Li, P. & Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Engelen, S. E., Robinson, A. J., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreno-Gonzalez, M. A., Ortega-Rivera, O. A. & Steinmetz, N. F. Two decades of vaccine development against atherosclerosis. Nano Today 50, 101822 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arter. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article  CAS  Google Scholar 

  16. Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Namiki, M. et al. Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice. Atherosclerosis 172, 21–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka, T. et al. Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. 11, 1772–1779 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, M. et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/-mice. Biomaterials 226, 119550 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kita, T. et al. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. 947, 199–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson, J. & Carlsson, R. Oxidized LDL and Antibodies Thereto for the Treatment of Atherosclerotic Plaques. Publication No. WO 2008/104194 A1 (World Intellectual Property Organization, 2007).

  27. Makabe, K., Tereshko, V., Gawlak, G., Yan, S. & Koide, S. Atomic-resolution crystal structure of Borrelia burgdorferi outer surface protein A via surface engineering. Protein Sci. 15, 1907–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gautier, E. L., Jakubzick, C. & Randolph, G. J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arter. Thromb. Vasc. Biol. 29, 1412–1418 (2009).

    Article  CAS  Google Scholar 

  30. Georgakis, M. K., Bernhagen, J., Heitman, L. H., Weber, C. & Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 43, 1799–1808 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Choudhury, R. P., Lee, J. M. & Greaves, D. R. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Maguire, E. M., Pearce, S. W. & Xiao, Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc. Pharmacol. 112, 54–71 (2019).

    Article  CAS  Google Scholar 

  35. Reardon, C. A. & Getz, G. S. Mouse models of atherosclerosis. Curr. Opin. Lipidol. 12, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Matsuura, E., Hughes, G. R. & Khamashta, M. A. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7, 558–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Li, S. et al. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol. Metab. 2, 256–269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peters, E. B. & Kibbe, M. R. Nanomaterials to resolve atherosclerosis. ACS Biomater. Sci. Eng. 6, 3693–3712 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Nong, J., Glassman, P. M. & Muzykantov, V. R. Targeting vascular inflammation through emerging methods and drug carriers. Adv. Drug Deliv. Rev. 184, 114180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shuvaev, V. V. et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25, 348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shuvaev, V. V. et al. Modulation of endothelial targeting by size of antibody–antioxidant enzyme conjugates. J. Control. Release 149, 236–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Hutmacher, C. & Neri, D. Antibody–cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv. Drug Deliv. Rev. 141, 67–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Bootz, F. & Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today 21, 180–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galeazzi, M. et al. FRI0118 Dekavil (F8IL10)–Update on the Results of Clinical Trials Investigating the Immunocytokine in Patients with Rheumatoid Arthritis (BMJ Publishing Group, 2018).

  46. Toshima, S. et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arter. Thromb. Vasc. Biol. 20, 2243–2247 (2000).

    Article  CAS  Google Scholar 

  47. Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N. Y. Acad. Sci. 947, 214–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sziksz, E. et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015, 764641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Getz, G. S. & Reardon, C. A. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arter. Thromb. Vasc. Biol. 36, 1734–1741 (2016).

    Article  CAS  Google Scholar 

  50. Sakkers, T. R. et al. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 384, 117279 (2023).

  51. Gonçalves, I. et al. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis 205, 96–100 (2009).

    Article  PubMed  Google Scholar 

  52. Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Butcher, M. J., Herre, M., Ley, K. & Galkina, E. Flow cytometry analysis of immune cells within murine aortas. J. Vis. Exp. https://doi.org/10.3791/2848 (2011).

Download references

Acknowledgements

This work was supported by the Chicago Immunoengineering Innovation Center of the University of Chicago, the Gracias Family Foundation, the National Heart, Lung and Blood Institute (T32HL007605-35, L.R.V.), the American Heart Association Postdoctoral Fellowship Award (#916845, L.R.V.) and the NIH T32 MSTP Training Grants (#T32GM150375 and #T32GM007281, S.N.d.M.). We thank C. R. Alulis for helpful conversations regarding murine atherosclerosis models; S. Gomes for tissue culture and general laboratory support; the Cytometry and Antibody Technology Core Facility (Cancer Center Support Grant P30CA014599), the Animal Resources Center, the Human Tissue Resource Center, and the Integrated Light Microscopy Core at the University of Chicago. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

L.R.V. conceptualized the project, designed the methodology, performed validation, formal analysis, investigation, data curation and visualization, supervised and administered the project, acquired funding and wrote the original manuscript draft. S.N.d.M. designed the methodology and software, performed validation, formal analysis, investigation and visualization, and reviewed and edited the manuscript. G.B. designed the methodology and software, conducted formal analysis and investigation, and reviewed and edited the manuscript. T.N.B. designed the methodology, conducted formal analysis and investigation, and reviewed and edited the manuscript. J.W.R. designed the methodology, conducted investigation, and reviewed and edited the manuscript. E.A.W. designed the methodology, conducted investigation, procured resources, and reviewed and edited the manuscript. Z.Z. designed the methodology, conducted investigation, and reviewed and edited the manuscript. M.N. designed the methodology, conducted investigation, and reviewed and edited the manuscript. A.S. designed the methodology, conducted investigation, and reviewed and edited the manuscript. Y.F. designed the methodology, procured resources, supervised the project, and reviewed and edited the manuscript. J.A.H. conceptualized the project, procured resources, supervised and administered the project, acquired funding, and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Lisa R. Volpatti or Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Prediman Shah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Table 1.

Reporting Summary

Supplementary Data 1

Uncropped blots for Supplementary Fig. 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpatti, L.R., Norton de Matos, S., Borjas, G. et al. LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice. Nat. Biomed. Eng (2026). https://doi.org/10.1038/s41551-025-01573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01573-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research