Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low reactogenicity and high tumour antigen expression from mRNA-LNPs with membrane-destabilizing zwitterionic lipids

Abstract

Two key challenges in translating messenger RNA-based lipid nanoparticle (mRNA-LNP) cancer vaccines to clinical use are limited mRNA expression and unavoidable inflammatory responses. Here we develop a membrane-destabilizing zwitterionic ionizable lipid that enhances mRNA expression by promoting endosomal escape while reducing inflammatory reactogenicity. This lipid features a pyridine-based carboxybetaine (PyCB) zwitterionic headgroup, biodegradable multitailed alkyl chains and a tertiary amine linker. The PyCB headgroup forms a zwitterionic PyCB–water complex that protonates to a positively charged state below pH 6.8. This allows for good biocompatibility at physiological pH and strong protonation in endosomes, enabling earlier and more efficient mRNA release when synergistic with the tertiary amine and the tail moiety. Incorporating membrane-destabilizing zwitterionic lipids into the LNP formulation used in a commercially available mRNA vaccine significantly boosts mRNA expression in antigen-presenting cells within lymph nodes, enhancing cytotoxic T cell activation. In addition, these membrane-destabilizing zwitterionic lipid-containing nanoparticles show reduced inflammation and neutrophil infiltration at the injection site due to their zwitterionic property. These lipids are also compatible with existing targeted nanoparticle formulations, further improving mRNA delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MeDZ lipid with reduced reactogenicity for efficient mRNA delivery.
Fig. 2: MeDZ LNP facilitates mRNA expression in vitro and in vivo.
Fig. 3: Model membrane studies of MeDZ lipid-mediated endosomal disruption and antigen presentation.
Fig. 4: MeDZ LNP enhances antigen presentation and exhibits reduced reactogenicity.
Fig. 5: MeDZ LNP vaccine prevents tumourigenesis, lung metastasis and recurrence.
Fig. 6: MeDZ LNP vaccine inhibits tumour growth.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its supplementary files. Any additional requests for information can be directed to and will be fulfilled by the corresponding author. Source data are provided with this paper.

References

  1. Liu, H. et al. Beyond the endosomal bottleneck: understanding the efficiency of mRNA/LNP delivery. Adv. Funct. Mater. 34, 2404510 (2024).

  2. Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Munro, A. P. et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. Lancet Infect. Dis. 22, 1131–1141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pulendran, B., Arunachalam, S. P. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosa Duque, J. S. et al. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines BNT162b2 and CoronaVac in healthy adolescents. Nat. Commun. 13, 3700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korzun, T. et al. From bench to bedside: implications of lipid nanoparticle carrier reactogenicity for advancing nucleic acid therapeutics. Pharmaceuticals 16, 1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. 9, 167–184 (2025).

    Article  CAS  PubMed  Google Scholar 

  9. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bauernfeind, S. et al. Association between reactogenicity and immunogenicity after vaccination with BNT162b2. Vaccines 9, 1089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, Y., Wang, Z. M., Song, D., Chen, M. & Xu, Q. Rational design of lipid nanoparticles: overcoming physiological barriers for selective intracellular mRNA delivery. Curr. Opin. Chem. Biol. 81, 102499 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albertsen, C. H. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article  Google Scholar 

  13. Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Luozhong, S. et al. A de novo strategy to improve pharmacokinetics of proteins from mRNA therapeutics via zwitterionic polypeptide fusion. J. Am. Chem. Soc. 146, 21245–21249 (2024).

  18. Yuan, Z. et al. Mitigating the immunogenicity of AAV-mediated gene therapy with an immunosuppressive phosphoserine-containing zwitterionic peptide. J. Am. Chem. Soc. 144, 20507–20513 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Dong, D. et al. High-strength and fibrous capsule-resistant zwitterionic elastomers. Sci. Adv. 7, eabc5442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. Engl. 50, 6109–6114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sayers, E. J. et al. Endocytic profiling of cancer cell models reveals critical factors influencing LNP-mediated mRNA delivery and protein expression. Mol. Ther. 27, 1950–1962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, Y., Li, Q., Chai, J. & Liu, Y. Cargo-templated crosslinked polymer nanocapsules and their biomedical applications. Adv. NanoBiomed Res. 1, 2000078 (2021).

    Article  CAS  Google Scholar 

  24. Pattipeiluhu, R. et al. Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection. Nat. Commun. 15, 1303 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, H. et al. Inverse cubic and hexagonal mesophase evolution within ionizable lipid nanoparticles correlates with mRNA transfection in macrophages. J. Am. Chem. Soc. 145, 24765–24774 (2023).

    CAS  Google Scholar 

  26. Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Philipp, J. et al. pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proc. Natl Acad. Sci. USA 120, e2310491120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, D. Y. et al. Liposomes with water as a pH-responsive functionality for targeting of acidic tumor and infection sites. Angew. Chem. Int. Ed. Engl. 60, 17714–17719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sagarik, K. & Chaiyapongs, S. Structures and stability of salt-bridge in aqueous solution. Biophys. Chem. 117, 119–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Gun’ko, V. M. & Turov, V. V. Structure of hydrogen bonds and 1H NMR spectra of water at the interface of oxides. Langmuir 15, 6405–6415 (1999).

    Article  Google Scholar 

  34. Ou, H. et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 65, 339–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, P. et al. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl Acad. Sci. USA 112, 12046–12051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Förster, R., Braun, A. & Worbs, T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33, 271–280 (2012).

    Article  PubMed  Google Scholar 

  38. Zhao, Y. et al. Antitumour vaccination via the targeted proteolysis of antigens isolated from tumour lysates. Nat. Biomed. Eng 9, 234–248 (2025).

    Article  CAS  PubMed  Google Scholar 

  39. Yamashiro, D. J. & Maxfield, F. R. Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells. J. Cell Biol. 105, 2723–2733 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Schlame, M. et al. The physical state of lipid substrates provides transacylation specificity for tafazzin. Nat. Chem. Biol. 8, 862–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y. et al. Nanomechanical action opens endo-lysosomal compartments. Nat. Commun. 14, 6645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, C., Zhao, C., Wang, W., Liu, X. & Deng, H. Biomimetic noncationic lipid nanoparticles for mRNA delivery. Proc. Natl Acad. Sci. USA 120, e2311276120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nauseef, W. M. & Borregaard, N. Neutrophils at work. Nat. Immunol. 15, 602–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 5, 316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 8, 1483–1498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capece, D. et al. NF-kappaB: blending metabolism, immunity, and inflammation. Trends Immunol. 43, 757–775 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528–534 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Institute of Allergy and Infectious Disease (1R01AI178125-01A1 and 1R01AI193334-01) and start-up support from Cornell University, including Robert Langer ’70 Family and Friends Professorship, Cornell NEXT Nano Initiative and Cornell Engineering’s inaugural Sprout Award. Animal IVIS images were acquired through the Cornell Institute of Biotechnology’s Imaging Facility with NIH S10OD025049. We thank the Weiss lab at Cornell for the kind gift of EO771 cells; T. Totman, E. Feldman and F. Burgus at Cornell CARE for service and advice on caring for animals; the Cornell IACUC for help with composing and managing animal protocols; and the NIH Tetramer Core Facility (NIH Contract 75N93020D00005 and RRID:SCR_026557) for providing anti-H2Kb OVA tetramer-SIINFEKL antibody. Elements in Supplementary Fig. 7 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.J. devised the project and wrote the paper. Y.Z., R.L., P.L., J.W., Y.C., Y.M., Z.C., M.C. and S.L. carried out the experimental work and analysed the data. E.W. and A.L. provided the supplies for cell experiments. Y.D., Y.H., Z.T., C.T., S.C., H.Y., D.L., W.G. and S.B. contributed to the discussion of the experimental results.

Corresponding author

Correspondence to Shaoyi Jiang.

Ethics declarations

Competing interests

S.J. and Y.Z. are authors of a US Provisional Application (No. 63/723,698) related to this work filed on 22 November 2024 and S.J., Y.Z., Y.H. and P.L. an International (PCT) Application (No. PCT/US2025/056506) filed on 21 November 2025 by Cornell University. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Reporting Summary

Peer Review File

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Figs. 1–6

Source data for Figs. 1–6.

Source Data Fig. 4

Source data Figs. 4l–n.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, R., Liu, P. et al. Low reactogenicity and high tumour antigen expression from mRNA-LNPs with membrane-destabilizing zwitterionic lipids. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01577-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research