Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A programmable bioresorbable electrochemical microneedle sensor array for perioperative monitoring of organ health

Abstract

Comprehensive and continuous assessment of organ physiology and biochemistry, beyond the capabilities of conventional monitoring tools, can enable timely interventions for perioperative complications such as organ ischaemia and transplant rejection. Here we present an integrated bioresorbable system that enables multiplexed, real-time and spatially mapped electrochemical monitoring of deep organs throughout the surgical course. Using a 3D printing-based, photolithography-free fabrication process, the system features a flexible, 3D programmed, individually addressable microneedle sensor array with backward-facing barbs for conformal and stable organ interfacing and 3D parenchymal probing. Electrochemical functionalization of microneedle tips enable concurrent monitoring and spatial mapping of key biochemical markers, such as electrolytes, metabolites and oxygenation, in deep organs for at least 7 days. An electrically programmable self-destruction mechanism offers controllability over the degradation process, eliminating the need for device retrieval. Demonstrations in clinically relevant complications such as kidney ischaemia and gut disorders in animal models highlight the broad applications of this device in intra- and postoperative monitoring, advancing perioperative care and critical care medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design concepts and system features.
Fig. 2: Photographs and micrographs of the 3D printing-based, photolithography-free fabrication process.
Fig. 3: In vitro and in vivo characterizations of the implant.
Fig. 4: Characterizations of the microneedle sensors.
Fig. 5: Monitoring of acute and chronic kidney ischaemia in rats.
Fig. 6: Biocompatibility study of the implant.

Data availability

All data supporting the findings of this study are presented in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Domenghino, A. et al. Consensus recommendations on how to assess the quality of surgical interventions. Nat. Med. 29, 811–822 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Javed, H. et al. Challenges and solutions in postoperative complications: a narrative review in general surgery. Cureus 15, e50942 (2023).

    PubMed  PubMed Central  Google Scholar 

  3. Dobson, G. P. Trauma of major surgery: a global problem that is not going away. Int. J. Surg. 81, 47–54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article  PubMed  Google Scholar 

  5. Prowle, J. R. et al. Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nat. Rev. Nephrol. 17, 605–618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gharbieh, S., Reeves, F. & Challacombe, B. The prostatic middle lobe: clinical significance, presentation and management. Nat. Rev. Urol. 20, 645–653 (2023).

    Article  PubMed  Google Scholar 

  7. Sah, B. K. et al. Predictive factors and diagnostic significance of CT findings for anastomotic leak after gastric cancer surgery: a retrospective analysis. Aging Cancer 4, 85–93 (2023).

    Article  CAS  Google Scholar 

  8. Chung, R. et al. Survival outcomes in patients with muscle invasive bladder cancer undergoing radical vs partial cystectomy. Urol. Oncol. 41, 356.e311–356.e318 (2023).

    Article  Google Scholar 

  9. Terrault, N. A., Francoz, C., Berenguer, M., Charlton, M. & Heimbach, J. Liver Transplantation 2023: status report, current and future challenges. Clin. Gastroenterol. Hepatol. 21, 2150–2166 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Mesnard, B. et al. Kidney transplantation from elderly donors (>70 years): a systematic review. World J. Urol. 41, 695–707 (2023).

    Article  PubMed  Google Scholar 

  11. Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 (2023).

    Article  PubMed  Google Scholar 

  13. Thompson, J. S. et al. Temporal patterns of postoperative complications. Arch. Surg. 138, 596–603 (2003).

    Article  PubMed  Google Scholar 

  14. Himawan, A. et al. Where microneedle meets biomarkers: futuristic application for diagnosing and monitoring localized external organ diseases. Adv. Healthc. Mater. 12, 2202066 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Pieper, C. C. Back to the Future II—a comprehensive update on the rapidly evolving field of lymphatic imaging and interventions. Invest. Radiol. 58, 610–640 (2023).

    Article  PubMed  Google Scholar 

  16. Morriss, R. et al. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled trial. Nat. Med. 30, 403–413 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reeves, P. T., James-Davis, L. T. & Khan, M. A. Gastrointestinal bleeding in the neonate: updates on diagnostics, therapeutics, and management. NeoReviews 24, e403–e413 (2023).

    Article  PubMed  Google Scholar 

  18. Gedela, M. et al. Mitral valve intervention in elderly or high-risk patients: a review of current surgical and interventional management. Can. J. Cardiol. 40, 250–262 (2024).

    PubMed  Google Scholar 

  19. Maisel, A. S. et al. Biomarkers in kidney and heart disease. Nephrol. Dial. Transplant. 26, 62–74 (2011).

    Article  PubMed  Google Scholar 

  20. Hu, C., Wang, L., Liu, S., Sheng, X. & Yin, L. Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS Nano 18, 3969–3995 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Vora, L. K. et al. Microneedle-based biosensing. Nat. Rev. Bioeng. 2, 64–81 (2024).

    Article  CAS  Google Scholar 

  22. Li, X. et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8, 2100827 (2021).

    Article  CAS  Google Scholar 

  23. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Li, X. et al. Self-calibrating multiplexed microneedle electrode array for continuous mapping of subcutaneous multi-analytes in diabetes. Innovation 6, 100781 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, D. et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34, 2109764 (2022).

    Article  CAS  Google Scholar 

  26. Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Park, J., Seo, B., Jeong, Y. & Park, I. A review of recent advancements in sensor-integrated medical tools. Adv. Sci. 11, 2307427 (2024).

    Article  Google Scholar 

  28. Huang, S. et al. Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for theranostic endoscopic surgery. Adv. Funct. Mater. 33, 2214485 (2023).

    Article  CAS  Google Scholar 

  29. Yang, H. et al. Carbon nanotube array-based flexible multifunctional electrodes to record electrophysiology and ions on the cerebral cortex in real time. Adv. Funct. Mater. 32, 2204794 (2022).

    Article  CAS  Google Scholar 

  30. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koeners, M. P. et al. Telemetry-based oxygen sensor for continuous monitoring of kidney oxygenation in conscious rats. Am. J. Physiol. Renal Physiol. 304, F1471–F1480 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harms, J., Schneider, A., Baumgartner, M., Henke, J. & Busch, R. Diagnosing acute liver graft rejection: experimental application of an implantable telemetric impedance device in native and transplanted porcine livers. Biosens. Bioelectron. 16, 169–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Luo, X., Yang, L. & Cui, Y. Microneedles: materials, fabrication, and biomedical applications. Biomed. Microdevices 25, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gülçür, M. et al. A cost-effective process chain for thermoplastic microneedle manufacture combining laser micro-machining and micro-injection moulding. CIRP J. Manuf. Sci. Technol. 32, 311–321 (2021).

    Article  Google Scholar 

  37. Detamornrat, U., McAlister, E., Hutton, A. R., Larrañeta, E. & Donnelly, R. F. The role of 3D printing technology in microengineering of microneedles. Small 18, 2106392 (2022).

    Article  CAS  Google Scholar 

  38. Bystrova, S. & Luttge, R. Micromolding for ceramic microneedle arrays. Microelectron. Eng. 88, 1681–1684 (2011).

    Article  CAS  Google Scholar 

  39. Azizi Machekposhti, S., Khanna, S., Shukla, S. & Narayan, R. Microneedle fabrication methods and applications. MRS Commun. 13, 212–224 (2023).

    Article  CAS  Google Scholar 

  40. Zhou, W. et al. Wireless facial biosensing system for monitoring facial palsy with flexible microneedle electrode arrays. npj Digit. Med. 7, 13 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji, H. et al. Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario. npj Flex. Electron. 7, 46 (2023).

    Article  CAS  Google Scholar 

  42. Kim, H. et al. Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 10, eadk5260 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao, Q. et al. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography. Sci. Adv. 10, eadn7202 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, S. Y. et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 4, 1702 (2013).

    Article  PubMed  Google Scholar 

  45. Farzam, M., Beitollahpoor, M. & Pesika, N. S. Nature-inspired directional microneedle structures for reversible gripping on skin and fibrous materials. Adv. Eng. Mater. 26, 2400149 (2024).

    Article  CAS  Google Scholar 

  46. Chen, Z. et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10, 29338–29346 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, S., Chu, S., Banis, G. E., Beardslee, L. A. & Ghodssi, R. Biomimetic barbed microneedles for highly robust tissue anchoring. In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) 885–888 (IEEE, 2020).

  48. Han, D. et al. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30, 1909197 (2020).

    Article  CAS  Google Scholar 

  49. Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Bahnick, A. J. et al. Controlled transdermal delivery of dexamethasone for pain management via photochemically 3D-printed bioresorbable microneedle arrays. Adv. Healthc. Mater. 13, 2402113 (2024).

    Article  CAS  Google Scholar 

  51. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl Acad. Sci. USA 120, e2217734120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, G. et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci. Adv. 8, eabp9169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  55. Bae, J.-Y. et al. A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing. Nat. Electron. 7, 815–828 (2024).

    Article  Google Scholar 

  56. Kim, H.-S. et al. Bioresorbable silicon nanomembranes and iron catalyst nanoparticles for flexible, transient electrochemical dopamine monitors. Adv. Healthc. Mater. 7, 1801071 (2018).

    Article  Google Scholar 

  57. Li, R. et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11, 3207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. Fully printed and self-compensated bioresorbable electrochemical devices based on galvanic coupling for continuous glucose monitoring. Sci. Adv. 9, eadi3839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, J. et al. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383, 1096–1103 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, T.-L. et al. Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci. Adv. 8, eabo7049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khatib, M. et al. High-density soft bioelectronic fibres for multimodal sensing and stimulation. Nature 645, 656–664 (2025).

    Article  CAS  PubMed  Google Scholar 

  62. Xie, R. et al. A movable long-term implantable soft microfibre for dynamic bioelectronics. Nature 645, 648–655 (2025).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, Y. et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release. Nanoscale 13, 18112–18124 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, H. et al. Bioelectronic sutures with electrochemical pH-sensing for long-term monitoring of the wound healing progress. Adv. Funct. Mater. 34, 2402501 (2024).

    Article  CAS  Google Scholar 

  65. Rauhala, O. J. et al. E-suture: mixed-conducting suture for medical devices. Adv. Healthc. Mater. 13, 2302613 (2024).

    Article  CAS  Google Scholar 

  66. Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article  PubMed  Google Scholar 

  67. Liu, G. & McEnnis, K. Glass transition temperature of PLGA particles and the influence on drug delivery applications. Polymers 14, 993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pingarrón, J. M., Yáñez-Sedeño, P. & González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53, 5848–5866 (2008).

    Article  Google Scholar 

  69. Tonelli, D., Scavetta, E. & Gualandi, I. Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19, 1186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ouyang, W. et al. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups. Neuron 112, 1764–1777.e5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeong, H. et al. Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Sci. Adv. 7, eabg3092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y. et al. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat. Commun. 15, 511 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Malek-Khatabi, A. et al. Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery. Biomater. Sci. 11, 5390–5409 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, J. et al. Masticatory system-inspired microneedle theranostic platform for intelligent and precise diabetic management. Sci. Adv. 8, eabo6900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, J. Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Xie, X. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2, 894–906 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rivas, L. et al. Micro-needle implantable electrochemical oxygen sensor: ex-vivo and in-vivo studies. Biosens. Bioelectron. 153, 112028 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Gerwig, R. et al. PEDOT–CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front. Neuroeng. 5, 8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buckthorpe, M. W., Hannah, R., Pain, T. G. & Folland, J. P. Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 46, 566–576 (2012).

    Article  PubMed  Google Scholar 

  81. Yang, B., Fung, A., Pac-Soo, C. & Ma, D. Vascular surgery-related organ injury and protective strategies: update and future prospects. Br. J. Anaesth. 117, ii32–ii43 (2016).

    Article  PubMed  Google Scholar 

  82. Tasoulis, M. K. & Douzinas, E. E. Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J. Biomed. Sci. 23, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guyton, K. & Alverdy, J. C. The gut microbiota and gastrointestinal surgery. Nat. Rev. Gastroenterol. Hepatol. 14, 43–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Czubacka, E. & Czerczak, S. Are platinum nanoparticles safe to human health? Med. Pr. 70, 487–495 (2019).

    Article  PubMed  Google Scholar 

  85. Wang, H. et al. Biodegradable microelectrodes for monitoring the dynamics of extracellular Ca2+ in rat brain. Anal. Chem. 95, 8586–8595 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Sobczak, M. Biodegradable polyurethane elastomers for biomedical applications – synthesis methods and properties. Polym. Plast. Technol. Eng. 54, 155–172 (2015).

    Article  CAS  Google Scholar 

  87. Kawamura, R. & Michinobu, T. PEDOT:PSS versus polyaniline: a comparative study of conducting polymers for organic electrochemical transistors. Polymers 15, 4657 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feng, R., Chu, Y., Wang, X., Wu, Q. & Tang, F. A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane. J. Electroanal. Chem. 895, 115518 (2021).

    Article  CAS  Google Scholar 

  89. Choi, H. J. et al. MG-63 osteoblast-like cell proliferation on auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration. Biomater. Res. 20, 33 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the startup funding to W.O. from the Thayer School of Engineering at Dartmouth College. This work was also supported by the National Institute of General Medical Sciences (NIGMS) under award number R35GM159840 (W.O.). The authors further acknowledge the following Shared Resources facilities at the Dartmouth Cancer Center: Irradiation, Pre-clinical Imaging and Microscopy Resource (IPIMSR, RRID:SCR_025077), Pathology Shared Resource (PSR, RRID:SCR_023479), and Trace Element Analysis Shared Resource (TEASR, RRID:SCR_009777), supported by the NCI Cancer Center Support Grant (5P30CA023108-41). The Dartmouth Biomedical National Elemental Imaging Resource (BNEIR), part of TEASR, is additionally supported by NIGMS under award R24GM141194 and by the NIH Shared Instrumentation Grant S10OD032352.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and W.O. conceived the ideas and designed the research. X.L. developed the sensors. X.L., G.L., M.Z., J.R. and M.M. manufactured and tested the sensors. S.L. designed and manufactured the electronics. J.M. and C.Y. performed the finite element simulation. X.L. performed the sensor characterizations and animal experiments. W.O. and H.F. supervised the research. X.L. and W.O. wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Wei Ouyang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Joshua Rainbow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional data on design concepts and system features.

a, Bioresorption processes of materials. b, Schematic illustration of the rolling process of the e-suture. c, Definition of rolling parameters. d, E-suture diameter v.s. total width of electrical interconnects at different substrate thickness. e, Micrograph of the e-suture and a standard size #4 suture. f, Cross-sectional micrograph of the e-suture. g, Photograph of a completed 6×6 device. h, Photograph of a completed 6×6 device on the palm. i, Stability of a 3×3 device in PBS at 37 °C. j, The electrical resistance of individual electrical interconnects of the e-suture (1-9#) in PBS at 37 °C.

Source data

Extended Data Fig. 2 Mechanical characterizations of the barbed microneedle array.

a, Schematic illustration of the fabrication process of barbed microneedles. b-d, Numerical simulation of the tissue retention characteristics of microneedles with 0 (b), 1 (c), and 2 (d) rows of barbs. e, Photographs of weight-holding tests of microneedles with 0, 1, 2, and 3 rows of barbs using 10-gram weights. f, Simulated maximum pull-out force of barbed microneedles. g, Maximum pull-out force of barbed microneedles measured by the weight-holding test. The data are presented as mean ± s.d. (n = 3 independent experiments). h, Resistance force experienced by a bare microneedle during an insertion test in a rat kidney. i, Photographs of the insertion test of a bare microneedle. j, Resistance force experienced by a barbed microneedle during an insertion test in a rat kidney. k, Photographs of the insertion test of a barbed microneedle.

Source data

Extended Data Fig. 3 Response and reversibility of microneedle electrochemical sensors.

a, Na+ sensor. b, pH sensor. c, Lactic acid sensor. d, Uric acid sensor.

Source data

Extended Data Fig. 4 Reproducibility of microneedle electrochemical sensors (n = 3 independent sensors).

a, K+ sensor. b, Na+ sensor. c, pH sensor. d, Glucose sensor. e, Lactic acid sensor. f, Uric acid sensor. g, Oxygen sensor. All the data are presented as mean ± s.d.

Source data

Extended Data Fig. 5 Validation of microneedle electrochemical sensors against standard methods.

a-b, Error grid analysis (a) and relative errors to reference values (b) of the K+ sensor. The data are presented as mean ± s.d. (n = 3 independent sensors). c-d, Error grid analysis (c) and relative errors to reference values (d) of the Na+ sensor. The data are presented as mean ± s.d. (n = 3 independent sensors). e-f, Error grid analysis (e) and relative errors to reference values (f) of the pH sensor. Region A corresponds to those values within <20% deviation from the reference results, which could inform reliable decisions. Region B shows inaccurate values with 20%-50% deviation from the reference results. Region C reflects inaccurate values with 50%-80% deviation. Region D shows inaccurate values indicating a potential failure to detect target chemicals. The data are presented as mean ± s.d. (n = 3 independent sensors). g-h, Clarke’s error grid analysis (g) and relative errors to reference values (h) of the glucose sensor. Region A corresponds to those values within 20% deviation from the reference glucose values. Region B shows inaccurate values with >20% deviation from the reference glucose values but would not lead to inappropriate diabetes treatment. Region C reflects inaccurate values leading to unnecessary diabetes treatment. Region D shows inaccurate values indicating a potential failure to detect hypoglycemia or hyperglycemia. Region E corresponds to those inaccurate values that would confuse treatment of hypoglycemia for hyperglycemia and vice versa. The data are presented as mean ± s.d. (n = 3 independent sensors). i-j, Error grid analysis (i) and relative errors to reference values (j) of the lactic acid sensor. The data are presented as mean ± s.d. (n = 3 independent sensors). k-l, Error grid analysis (k) and relative errors to reference values (l) of the uric acid sensor. The definitions of the regions are the same as those in a-f. The data are presented as mean ± s.d. (n = 3 independent sensors).

Source data

Extended Data Fig. 6 Monitoring of gut disorders in rats.

a, Schematic illustration of gut monitoring using the device. Created in BioRender. Ouyang, W. (2025) https://BioRender.com/21omdf7. b, Photograph of the SMART encircling the small intestine of a rat. c, Concurrent monitoring of glucose, Na+, K+, and pH in the lumen of the intestine. d, EMGs of the intestine upon injection of PBS, glucose, and capsaicin.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–19 and Table 1.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, S., Mo, J. et al. A programmable bioresorbable electrochemical microneedle sensor array for perioperative monitoring of organ health. Nat. Biomed. Eng (2026). https://doi.org/10.1038/s41551-025-01609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01609-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing