Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic regulation of key developmental events during mammalian embryogenesis

Abstract

Metabolic regulation is critical in embryonic development and influences key processes such as fertilization, zygotic genome activation, cell compaction, implantation, gastrulation and organ development. Here we explore the interplay between metabolism and embryonic development in the context of important sequential key embryonic events, highlighting the orchestration of developmental processes by various metabolites and signalling molecules. Key metabolites, including glucose, fatty acids and amino acids, act as modulators of developmental processes, while also serving as energy sources and building blocks for cellular structures. Understanding the intricate relationship between metabolism and embryogenesis may provide insights into developmental disorders and potential therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of the redox balance in the embryo from the zygote to the 2-cell stage.
Fig. 2: Metabolic features in key sequential events of preimplantation embryo development.
Fig. 3: Metabolic processes during embryonic diapause.
Fig. 4: Metabolic regulation of embryonic implantation and post-implantation development.

Similar content being viewed by others

References

  1. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, B. et al. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature 605, 761–766 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Sharpley, M. S., Chi, F., Hoeve, J. T. & Banerjee, U. Metabolic plasticity drives development during mammalian embryogenesis. Dev. Cell 56, 2329–2347 e2326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, J. et al. Metabolic remodelling during early mouse embryo development. Nat. Metab. 3, 1372–1384 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Ramirez, C. A. et al. Atlas of fetal metabolism during mid-to-late gestation and diabetic pregnancy. Cell 187, 204–215 e214 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J. J. & Whittingham, D. G. The roles of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice in vitro. Development 112, 99–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Wales, R. G. et al. The metabolism of specifically labelled lactate and pyruvate by two-cell mouse embryos. J. Reprod. Fertil. 33, 207–222 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Li, J. et al. Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov. 8, 96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhao, J. et al. Dynamic metabolism during early mammalian embryogenesis. Development 150, dev202148 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Cao, D. et al. Selective utilization of glucose metabolism guides mammalian gastrulation. Nature 634, 919–928 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng, S.-F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. Amylin receptor insensitivity impairs hypothalamic POMC neuron differentiation in the male offspring of maternal high-fat diet-fed mice. Mol. Metab. 44, 101135 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Biggers, J. D., Whittingham, D. G. & Donahue, R. P. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc. Natl Acad. Sci. USA 58, 560–567 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conaghan, J., Handyside, A. H., Winston, R. M. & Leese, H. J. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99, 87–95 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Baumann, C. G., Morris, D. G., Sreenan, J. M. & Leese, H. J. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol. Reprod. Dev. 74, 1345–1353 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Brinster, R. L. Incorporation of carbon from glucose and pyruvate into the preimplantation mouse embryo. Exp. Cell. Res. 58, 153–158 (1969).

    Article  CAS  PubMed  Google Scholar 

  20. Ross, J. M. et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl Acad. Sci. USA 107, 20087–20092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doherty, J. R. & Cleveland, J. L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 123, 3685–3692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veech, R. L. et al. The ‘great’ controlling nucleotide coenzymes. IUBMB Life 71, 565–579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Streffer, C., Elias, S. & van Beuningen, D. Influence of NAD+ on development of mouse blastocysts in vitro. Nature 250, 434–435 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Intlekofer, A. M. et al. l-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat. Chem. Biol. 13, 494–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Intlekofer, A. M. et al. Hypoxia induces production of l-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Li, J. et al. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci. Rev. 11, nwad295 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, M., Chen, Z. & Zhang, Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J. 41, e112012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, B. et al. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat. Cell Biol. 26, 962–974 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Lane, M. & Gardner, D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18361–18367 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Houghton, F. D., Thompson, J. G., Kennedy, C. J. & Leese, H. J. Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, K. L. & Leese, H. J. Role of glucose in mouse preimplantation embryo development. Mol. Reprod. Dev. 40, 436–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Rossant, J. Genetic control of early cell lineages in the mammalian embryo. Annu. Rev. Genet. 52, 185–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. White, M. D., Zenker, J., Bissiere, S. & Plachta, N. Instructions for assembling the early mammalian embryo. Dev. Cell 45, 667–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Chi, F., Sharpley, M. S., Nagaraj, R., Roy, S. S. & Banerjee, U. Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev. Cell 53, 9–26 e24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tu, W. B., Christofk, H. R. & Plath, K. Nutrient regulation of development and cell fate decisions. Development 150, dev199961 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cornacchia, D. et al. Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 25, 120–136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aizawa, R. et al. Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development 146, dev181925 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Mau, K. H. T. et al. Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development. Nat. Commun. 13, 3861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, K. & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20, 3–11 (2013).

    Article  PubMed  Google Scholar 

  46. Zhang, S. et al. The regulation, function and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13, 132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang, L. et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat. Cell Biol. 26, 278–293 (2024).

    Article  PubMed  Google Scholar 

  48. Murphy, B. D. Under arrest: the embryo in diapause. Dev. Cell 52, 139–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Hamatani, T. et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl Acad. Sci. USA 101, 10326–10331 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).

    Article  PubMed  Google Scholar 

  51. Hussein, A. M. et al. Metabolic control over mTOR-dependent diapause-like state. Dev. Cell 52, 236–250 e237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Weijden, V. A. et al. FOXO1-mediated lipid metabolism maintains mammalian embryos in dormancy. Nat. Cell Biol. 26, 181–193 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee, J.-E. et al. Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152, 2067–2075 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. He, B. et al. Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc. Natl Acad. Sci. USA 116, 16621–16630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iyer, D. P. et al. mTOR activity paces human blastocyst stage developmental progression. Cell 187, 6566–6583 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ye, Q., Zeng, X., Cai, S., Qiao, S. & Zeng, X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol. Metab. 32, 1015–1030 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, T., Zhao, J., Liu, F. & Li, Y. Lipid metabolism and endometrial receptivity. Hum. Reprod. Update 28, 858–889 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Fattahi, A. et al. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation. Theriogenology 108, 97–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Vasquez, Y. M. & DeMayo, F. J. Role of nuclear receptors in blastocyst implantation. Semin. Cell Dev. Biol. 24, 724–735 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Sun, X. & Dey, S. K. Aspects of endocannabinoid signaling in periimplantation biology. Mol. Cell. Endocrinol. 286, S3–S11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu, Y. et al. Excessive lipid peroxidation in uterine epithelium causes implantation failure and pregnancy loss. Adv. Sci. (Weinh.) 11, e2302887 (2024).

    Article  Google Scholar 

  65. Ruane, P. T. et al. Glucose influences endometrial receptivity to embryo implantation through O-GlcNAcylation-mediated regulation of the cytoskeleton. Am. J. Physiol. Cell Physiol. 327, C634–C645 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Ruane, P. T. et al. Protein O-GlcNAcylation promotes trophoblast differentiation at implantation. Cells 9, 2246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, H. et al. O-GlcNAc modification mediates aquaporin 3 to coordinate endometrial cell glycolysis and affects embryo implantation. J. Adv. Res. 37, 119–131 (2022).

    Article  PubMed  Google Scholar 

  68. Van Winkle, L. J., Tesch, J. K., Shah, A. & Campione, A. L. System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood. Hum. Reprod. Update 12, 145–157 (2006).

    Article  PubMed  Google Scholar 

  69. Van Winkle, L. J. Amino acid transport regulation and early embryo development. Biol. Reprod. 64, 1–12 (2001).

    Article  PubMed  Google Scholar 

  70. Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Dequéant, M.-L. & Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008).

    Article  PubMed  Google Scholar 

  72. Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Solmonson, A. et al. Compartmentalized metabolism supports midgestation mammalian development. Nature 604, 349–353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Øyen, N. et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide cohort study. Circulation 133, 2243–2253 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell 30, 938–949 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yost, R. A. & Enke, C. G. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal. Chem. 51, 1251–1264 (1979).

    Article  CAS  PubMed  Google Scholar 

  79. Sarafian, M. H. et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 86, 5766–5774 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, H. et al. Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 173, 1716–1727 e1717 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Cao, J. et al. Deciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution. Cell Metab. 36, 209–221 e206 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Shi, L. et al. Mid-infrared metabolic imaging with vibrational probes. Nat. Methods 17, 844–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perevedentseva, E., Krivokharchenko, A., Karmenyan, A. V., Chang, H.-H. & Cheng, C.-L. Raman spectroscopy on live mouse early embryo while it continues to develop into blastocyst in vitro. Sci. Rep. 9, 6636 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huang, J. et al. Lipid metabolic heterogeneity during early embryogenesis revealed by hyper-3D stimulated Raman imaging. Chem. Biomed. Imaging 3, 15–24 (2025).

    Article  CAS  PubMed  Google Scholar 

  87. Bradley, J. et al. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143, 2238–2247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, X., Dorlhiac, G., Landry, M. P. & Streets, A. Phototoxic effects of nonlinear optical microscopy on cell cycle, oxidative states and gene expression. Sci. Rep. 12, 18796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ottosen, L. D. M., Hindkjaer, J. & Ingerslev, J. Light exposure of the ovum and preimplantation embryo during ART procedures. J. Assist Reprod. Genet. 24, 99–103 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Alexandrov, T. Spatial metabolomics: from a niche field towards a driver of innovation. Nat. Metab. 5, 1443–1445 (2023).

    Article  PubMed  Google Scholar 

  91. Chandrasekaran, S. et al. Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Rep. 21, 2965–2977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, D. W., Zhang, L., Zhang, J. & Chandrasekaran, S. Inferring metabolic objectives and trade-offs in single cells during embryogenesis. Cell Syst 16, 101164 (2024).

    Article  Google Scholar 

  93. Zhai, J., Xiao, Z., Wang, Y. & Wang, H. Human embryonic development: from peri-implantation to gastrulation. Trends Cell Biol. 32, 18–29 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Ji, S. et al. OBOX regulates mouse zygotic genome activation and early development. Nature 620, 1047–1053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Whiddon, J. L., Langford, A. T., Wong, C.-J., Zhong, J. W. & Tapscott, S. J. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 49, 935–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, S. H., Liu, X., Jimenez-Morales, D. & Rinaudo, P. F. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. eLife 11, e79153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jia, Y. et al. Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. J. Pineal Res. 72, e12778 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Gardner, D. K. & Leese, H. J. The role of glucose and pyruvate transport in regulating nutrient utilization by preimplantation mouse embryos. Development 104, 423–429 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. Fu, J. et al. Non-invasive metabolomic profiling of day 3 embryo culture media using near-infrared spectroscopy to assess the development potential of embryos. Acta Biochim. Biophys. Sin. (Shanghai) 45, 1074–1078 (2013).

    Article  PubMed  Google Scholar 

  102. Botros, L., Sakkas, D. & Seli, E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod. 14, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Agarwal, A., Gupta, S. & Sharma, R. K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 3, 28 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Guérin, P., El Mouatassim, S. & Ménézo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189 (2001).

    Article  PubMed  Google Scholar 

  105. Dunning, K. R. et al. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Abe, H. et al. Fine structure of bovine morulae and blastocysts in vivo and in vitro. Anat. Embryol. (Berl.) 199, 519–527 (1999).

    Article  CAS  Google Scholar 

  107. de Andrade Melo-Sterza, F. & Poehland, R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in vitro, and stress conditions. Int. J. Mol. Sci. 22, 3421 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ren, L. et al. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum. Reprod. 30, 2892–2911 (2015).

    CAS  PubMed  Google Scholar 

  109. Belli, M. et al. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum. Reprod. 34, 601–611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rhon-Calderon, E. A. et al. Trophectoderm biopsy of blastocysts following IVF and embryo culture increases epigenetic dysregulation in a mouse model. Hum. Reprod. 39, 154–176 (2024).

    Article  CAS  PubMed  Google Scholar 

  111. Rodriguez-Terrones, D. et al. A distinct metabolic state arises during the emergence of 2-cell-like cells. EMBO Rep. 21, e48354 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Teslaa, T. & Teitell, M. A. Pluripotent stem cell energy metabolism: an update. EMBO J. 34, 138–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, J. et al. Metabolism in pluripotent stem cells and early mammalian development. Cell Metab. 27, 332–338 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Folmes, C. D. L. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.Z. conceived, supervised and revised the Review, Y.X. completed all the writing and drawing, and W.X. provided valuable suggestions and revised the Review.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Qingran Kong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xie, W. & Zhang, J. Metabolic regulation of key developmental events during mammalian embryogenesis. Nat Cell Biol 27, 1219–1229 (2025). https://doi.org/10.1038/s41556-025-01720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01720-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing