Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biological clocks keep a watch on mitosis

Abstract

Accurate chromosome segregation is vital for organismal development and homeostasis, with errors in this process strongly associated with tumourigenesis. A network of safeguard clocks preserves mitotic fidelity by detecting and eliminating cells dividing outside the stereotyped duration of successful mitosis. This Perspective examines recent advances in our understanding of mitotic timing mechanisms, presents emerging evidence for novel mitotic clocks and proposes a conceptual framework for how cells integrate temporal cues to preserve genomic integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular responses to mitotic errors.
Fig. 2: Apoptotic mitotic clocks.
Fig. 3: The mitotic-stopwatch pathway.

Similar content being viewed by others

References

  1. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).

    PubMed  Google Scholar 

  2. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    PubMed  Google Scholar 

  4. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Levine, M. S. & Holland, A. J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. 32, 620–638 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Hervé, S. et al. Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint. Nat. Cell Biol. 27, 73–86 (2025).

    PubMed  PubMed Central  Google Scholar 

  7. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    PubMed  Google Scholar 

  9. Kwon, M., Leibowitz, M. L. & Lee, J.-H. Small but mighty: the causes and consequences of micronucleus rupture. Exp. Mol. Med. 52, 1777–1786 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Zhu, J., Tsai, H.-J., Gordon, M. R. & Li, R. Cellular stress associated with aneuploidy. Dev. Cell 44, 420–431 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    PubMed  PubMed Central  Google Scholar 

  13. Fu, X. et al. Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol. Rep. 45, 801–808 (2021).

    PubMed  PubMed Central  Google Scholar 

  14. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    PubMed  Google Scholar 

  15. López, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Fava, L. L. et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34–45 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Evans, L. T. et al. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J. 40, e105106 (2021).

    PubMed  Google Scholar 

  18. Burigotto, M. et al. Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J. 40, e104844 (2021).

    PubMed  Google Scholar 

  19. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651.e5 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Soto, M. et al. P53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017).

    PubMed  Google Scholar 

  21. Gliech, C. R. & Holland, A. J. Keeping track of time: the fundamentals of cellular clocks. J. Cell Biol. 219, e202005136 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Lischetti, T. & Nilsson, J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol. Cell. Oncol. 2, e970484 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. McAinsh, A. D. & Kops, G. J. P. L. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 24, 543–559 (2023).

    PubMed  Google Scholar 

  24. Sparr, C. & Meitinger, F. Prolonged mitosis: a key indicator for detecting stressed and damaged cells. Curr. Opin. Cell Biol. 92, 102449 (2025).

    PubMed  Google Scholar 

  25. Contreras, A. & Perea-Resa, C. Transcriptional repression across mitosis: mechanisms and functions. Biochem. Soc. Trans. 52, 455–464 (2024).

    PubMed  PubMed Central  Google Scholar 

  26. Tanenbaum, M. E., Stern-Ginossar, N., Weissman, J. S. & Vale, R. D. Regulation of mRNA translation during mitosis. eLife 4, e07957 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Tsang, M.-J. & Cheeseman, I. M. Alternative CDC20 translational isoforms tune mitotic arrest duration. Nature 617, 154–161 (2023).

    PubMed  PubMed Central  Google Scholar 

  29. Bansal, S. & Tiwari, S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div. 14, 14 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Qiao, R. et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc. Natl Acad. Sci. USA 113, E2570–E2578 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Schrock, M. S., Stromberg, B. R., Scarberry, L. & Summers, M. K. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin. Cancer Biol. 67, 80–91 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Harley, M. E., Allan, L. A., Sanderson, H. S. & Clarke, P. R. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 29, 2407–2420 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Allan, L. A., Skowyra, A., Rogers, K. I., Zeller, D. & Clarke, P. R. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 37, e96831 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Kist, M. & Vucic, D. Cell death pathways: intricate connections and disease implications. EMBO J. 40, e106700 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    PubMed  Google Scholar 

  37. Millman, S. E. & Pagano, M. MCL1 meets its end during mitotic arrest. EMBO Rep. 12, 384–385 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. Sloss, O., Topham, C., Diez, M. & Taylor, S. Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget 7, 5176–5192 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Sivakumar, S. & Gorbsky, G. J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82–94 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117–7127 (2001).

    PubMed  PubMed Central  Google Scholar 

  41. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    PubMed  PubMed Central  Google Scholar 

  42. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Google Scholar 

  43. Inuzuka, H. et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    PubMed  Google Scholar 

  45. Hellmuth, S. & Stemmann, O. Separase-triggered apoptosis enforces minimal length of mitosis. Nature 580, 542–547 (2020).

    PubMed  Google Scholar 

  46. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat. Cell Biol. 8, 607–614 (2006).

    PubMed  Google Scholar 

  47. Funk, L. C., Zasadil, L. M. & Weaver, B. A. Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev. Cell 39, 638–652 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Lambrus, B. G. & Holland, A. J. A new mode of mitotic surveillance. Trends Cell Biol. 27, 314–321 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Meitinger, F. et al. Control of cell proliferation by memories of mitosis. Science 383, 1441–1448 (2024).

    PubMed  PubMed Central  Google Scholar 

  50. Uetake, Y. & Sluder, G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20, 1666–1671 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Lambrus, B. G. et al. A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143–153 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Meitinger, F. et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Fong, C. S. et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 5, e16270 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Lambrus, B. G. et al. P53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63–77 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    PubMed  Google Scholar 

  56. Brooks, C. L. & Gu, W. New insights into p53 activation. Cell Res. 20, 614–621 (2010).

    PubMed  Google Scholar 

  57. Vousden, K. H. & Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer 2, 594–604 (2002).

    PubMed  Google Scholar 

  58. Murray-Zmijewski, F., Slee, E. A. & Lu, X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9, 702–712 (2008).

    PubMed  Google Scholar 

  59. Burigotto, M. et al. PLK1 promotes the mitotic surveillance pathway by controlling cytosolic 53BP1 availability. EMBO Rep. 24, e57234 (2023).

    PubMed  PubMed Central  Google Scholar 

  60. Joo, W. S. et al. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev. 16, 583–593 (2002).

    PubMed  PubMed Central  Google Scholar 

  61. Derbyshire, D. J. et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863–3872 (2002).

    PubMed  PubMed Central  Google Scholar 

  62. Knobel, P. A. et al. USP28 is recruited to sites of DNA damage by the tandem BRCT domains of 53BP1 but plays a minor role in double-strand break metabolism. Mol. Cell. Biol. 34, 2062–2074 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Cuella-Martin, R. et al. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell 64, 51–64 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Jullien, D., Vagnarelli, P., Earnshaw, W. C. & Adachi, Y. Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. J. Cell Sci. 115, 71–79 (2002).

    PubMed  Google Scholar 

  65. Fulcher, L. J., Sobajima, T., Batley, C., Gibbs-Seymour, I. & Barr, F. A. MDM2 functions as a timer reporting the length of mitosis. Nat. Cell Biol. 27, 262–272 (2025).

    PubMed  PubMed Central  Google Scholar 

  66. Ly, J. et al. Nuclear release of eIF1 restricts start-codon selection during mitosis. Nature 635, 490–498 (2024).

    PubMed  PubMed Central  Google Scholar 

  67. Blagosklonny, M. V. Prolonged mitosis versus tetraploid checkpoint: how p53 measures the duration of mitosis. Cell Cycle 5, 971–975 (2006).

    PubMed  Google Scholar 

  68. Phan, T. P. et al. Centrosome defects cause microcephaly by activating the 53BP1–USP28–TP53 mitotic surveillance pathway. EMBO J. 40, e106118 (2021).

    PubMed  Google Scholar 

  69. Ly, T. et al. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS. eLife 6, e27574 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).

    PubMed  Google Scholar 

  71. Zierhut, C. et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315.e23 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Kalous, J. & Aleshkina, D. Multiple roles of PLK1 in mitosis and meiosis. Cells 12, 187 (2023).

    PubMed  PubMed Central  Google Scholar 

  73. Nair, V. M. et al. E3-ubiquitin ligase, FBXW7 regulates mitotic progression by targeting BubR1 for ubiquitin-mediated degradation. Cell. Mol. Life Sci. 80, 374 (2023).

    PubMed  PubMed Central  Google Scholar 

  74. Thorpe, J., Osei-Owusu, I. A., Avigdor, B. E., Tupler, R. & Pevsner, J. Mosaicism in human health and disease. Annu. Rev. Genet. 54, 487–510 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Malumbres, M. & Villarroya-Beltri, C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat. Rev. Genet. 25, 864–878 (2024).

    PubMed  Google Scholar 

  76. Vasudevan, A. et al. Aneuploidy as a promoter and suppressor of malignant growth. Nat. Rev. Cancer 21, 89–103 (2021).

    PubMed  Google Scholar 

  77. Sdeor, E., Okada, H., Saad, R., Ben-Yishay, T. & Ben-David, U. Aneuploidy as a driver of human cancer. Nat. Genet. 56, 2014–2026 (2024).

    PubMed  Google Scholar 

  78. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Fito-Lopez, B., Salvadores, M., Alvarez, M.-M. & Supek, F. Prevalence, causes and impact of TP53-loss phenocopying events in human tumors. BMC Biol. 21, 92 (2023).

    PubMed  PubMed Central  Google Scholar 

  80. Stracker, T. H. Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer. Front. Cell Dev. Biol. 12, 1451274 (2024).

    PubMed  PubMed Central  Google Scholar 

  81. Belal, H., Ying Ng, E. F. & Meitinger, F. 53BP1-mediated activation of the tumor suppressor p53. Curr. Opin. Cell Biol. 91, 102424 (2024).

    PubMed  Google Scholar 

  82. Munkhbaatar, E. et al. MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically. Nat. Commun. 11, 4527 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Nakano, T., Go, T., Nakashima, N., Liu, D. & Yokomise, H. Overexpression of antiapoptotic MCL-1 predicts worse overall survival of patients with non-small cell lung cancer. Anticancer Res. 40, 1007–1014 (2020).

    PubMed  Google Scholar 

  84. Sancho, M., Leiva, D., Lucendo, E. & Orzáez, M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J. 289, 6209–6234 (2022).

    PubMed  Google Scholar 

  85. Widden, H. & Placzek, W. J. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol. 4, 1029 (2021).

    PubMed  PubMed Central  Google Scholar 

  86. Hernández Borrero, L. J. & El-Deiry, W. S. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 1876, 188556 (2021).

    PubMed  Google Scholar 

  87. Prieto-Garcia, C., Tomašković, I., Shah, V. J., Dikic, I. & Diefenbacher, M. USP28: oncogene or tumor suppressor? A unifying paradigm for squamous cell carcinoma. Cells 10, 2652 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Ren, X. et al. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp. Hematol. Oncol. 12, 27 (2023).

    PubMed  PubMed Central  Google Scholar 

  89. Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol. 23, 2556–2563 (2003).

    PubMed  PubMed Central  Google Scholar 

  90. Ward, I. M. et al. 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol. Cell. Biol. 25, 10079–10086 (2005).

    PubMed  PubMed Central  Google Scholar 

  91. Diefenbacher, M. E. et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest. 124, 3407–3418 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Schülein-Völk, C. et al. Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep. 9, 1099–1109 (2014).

    PubMed  Google Scholar 

  93. Yan, V. C. et al. Why great mitotic inhibitors make poor cancer drugs. Trends Cancer 6, 924–941 (2020).

    PubMed  PubMed Central  Google Scholar 

  94. Zasadil, L. M. et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci. Transl. Med. 6, 229ra43 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Marquis, C. et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. Commun. 12, 1213 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Quinton, R. J. et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492–497 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Gliech, C. R. et al. Weakened APC/C activity at mitotic exit drives cancer vulnerability to KIF18A inhibition. EMBO J. 43, 666–694 (2024).

    PubMed  PubMed Central  Google Scholar 

  99. Shi, J., Orth, J. D. & Mitchison, T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 68, 3269–3276 (2008).

    PubMed  Google Scholar 

  100. Tunquist, B. J., Woessner, R. D. & Walker, D. H. Mcl-1 stability determines mitotic cell fate of human multiple myeloma tumor cells treated with the kinesin spindle protein inhibitor ARRY-520. Mol. Cancer Ther. 9, 2046–2056 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant 2T32HL007534-41 to C.R.G.

Author information

Authors and Affiliations

Authors

Contributions

A.J.H. and C.R.G. conceived of and wrote this paper.

Corresponding author

Correspondence to Andrew Jon Holland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Jonathon Pines and Adrian Saurin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gliech, C.R., Holland, A.J. Biological clocks keep a watch on mitosis. Nat Cell Biol 28, 13–20 (2026). https://doi.org/10.1038/s41556-025-01784-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01784-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing