Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radical-triggered translocation of C–C double bond and functional group

Abstract

Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)–H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)–H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)–H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon–carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for FG translocation.
Fig. 2: Mechanistic studies.
Fig. 3: DFT calculation and plausible mechanism.

Similar content being viewed by others

Data availability

Details about the materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in Supplementary Information. The authors declare that all the data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Cernak, T. et al. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  4. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C–H activation as strategic and tactical disconnections for C–C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).

    Article  CAS  Google Scholar 

  6. Shi, F. & Larock, R. C. in C-H Activation (eds Yu, J.-Q. & Shi, Z.) 123–164 (Springer Berlin Heidelberg, 2010).

  7. Sommer, H. et al. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, W. et al. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, H. Remote functionalization of C–H and C–C bonds by “naked” transition-metal ions (Cosi Fan Tutte). Acc. Chem. Res. 22, 282–287 (1989).

    Article  CAS  Google Scholar 

  10. Wu, X. & Zhu, C. Radical-mediated remote functional group migration. Acc. Chem. Res. 53, 1620–1636 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Qiu, G. & Wu, J. Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp3)–H bond activation. Org. Chem. Front. 2, 169–178 (2015).

    Article  CAS  Google Scholar 

  12. Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann–Löffler reaction). Chem. Rev. 63, 55–64 (1963).

    Article  CAS  Google Scholar 

  13. Choi, G. J. et al. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, W., Wang, Q. & Zhu, J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem. Soc. Rev. 50, 7359–7377 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Friese, F. W., Mück-Lichtenfeld, C. & Studer, A. Remote C–H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morcillo, S. P. et al. Photoinduced remote functionalization of amides and amines using electrophilic nitrogen radicals. Angew. Chem. Int. Ed. 57, 12945–12949 (2018).

    Article  CAS  Google Scholar 

  19. Matsushita, K. et al. Ester dance reaction on the aromatic ring. Sci. Adv. 6, eaba7614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, Z. et al. Carbonyl 1,2-transposition through triflate-mediated α-amination. Science 374, 734–740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, G. et al. Expanding reaction profile of allyl carboxylates via 1,2-radical migration (RaM): visible-light-induced phosphine-catalyzed 1,3-carbobromination of allyl carboxylates. J. Am. Chem. Soc. 145, 8275–8284 (2023).

    Article  CAS  Google Scholar 

  22. Yao, W. et al. Excited-state palladium-catalyzed radical migratory Mizoroki–Heck reaction enables C2-alkenylation of carbohydrates. J. Am. Chem. Soc. 144, 3353–3359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, K. et al. Functional group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

    Article  CAS  Google Scholar 

  25. Grubbs, R. H. & Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998).

    Article  CAS  Google Scholar 

  26. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    Article  CAS  Google Scholar 

  27. Bhawal, B. N. & Morandi, B. Shuttle catalysis—new strategies in organic synthesis. Chem. Eur. J. 23, 12004–12013 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 8, 5175–5187 (2018).

    Article  CAS  Google Scholar 

  31. Wang, X. & Studer, A. Iodine(III) reagents in radical chemistry. Acc. Chem. Res. 50, 1712–1724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jensen, K. H. & Sigman, M. S. Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions. Org. Biomol. Chem. 6, 4083–4088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martins, G. M. et al. A green approach: vicinal oxidative electrochemical alkene difunctionalization. ChemElectroChem 6, 1300–1315 (2019).

    Article  CAS  Google Scholar 

  34. Li, Z.-L. et al. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Romero, R. M., Wöste, T. H. & Muñiz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem. Asian J. 9, 972–983 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, Z. et al. Multi-site programmable functionalization of alkenes via controllable alkene isomerization. Nat. Chem. 15, 988–997 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Stateman, L. M. et al. Aza-heterocycles via copper-catalyzed, remote C–H desaturation of amines. Chem 8, 210–224 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Z. et al. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 131, 133228 (2023).

    Article  CAS  Google Scholar 

  41. Li, B. et al. Chemo-divergent cyano group migration: involving elimination and substitution of the key α-thianthrenium cyano species. Org. Lett. 25, 6633–6637 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Savile, C. K., Fabriàs, G. & Buist, P. H. Dihydroceramide Δ4 desaturase initiates substrate oxidation at C-4. J. Am. Chem. Soc. 123, 4382–4385 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Voica, A.-F. et al. Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, X. et al. Tertiary-alcohol-directed functionalization of remote C(sp3)–H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. 57, 1640–1644 (2018).

    Article  CAS  Google Scholar 

  45. Wu, X. et al. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Li, L. et al. A remote C–C bond cleavage–enabled skeletal reorganization: access to medium-/large-sized cyclic alkenes. Sci. Adv. 3, e1701487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, L. et al. Radical aryl migration enables diversity-oriented synthesis of structurally diverse medium/macro- or bridged-rings. Nat. Commun. 7, 13852 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, Z.-L. et al. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).

    Article  CAS  Google Scholar 

  49. Ma, Z., Wu, X. & Zhu, C. Merging fluorine incorporation and functional group migration. Chem. Rec. 23, e202200221 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Wei, Y., Wu, X. & Zhu, C. Radical heteroarylation of alkenes and alkanes via heteroaryl ­migration. Synlett 33, 1017–1028 (2022).

    Article  CAS  Google Scholar 

  51. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  52. Zhou, M.-J. et al. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, M. et al. Electrocatalytic allylic C–H alkylation enabled by a dual-function cobalt catalyst. Angew. Chem. Int. Ed. 61, e202115954 (2022).

    Article  CAS  Google Scholar 

  55. Zhao, H. et al. Merging halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: a mild route toward contra-thermodynamic olefins. J. Am. Chem. Soc. 143, 14806–14813 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Weiss, M. E. et al. Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011).

    Article  CAS  Google Scholar 

  57. Wang, S. et al. Site-selective amination towards tertiary aliphatic allylamines. Nat. Catal. 5, 642–651 (2022).

    Article  CAS  Google Scholar 

  58. Wang, S. et al. Cobalt-catalysed allylic fluoroalkylation of terpenes. Nat. Synth. 2, 1202–1210 (2023).

    Article  Google Scholar 

  59. Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).

    Article  CAS  Google Scholar 

  60. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China no. 2022YFA1505100 (H.Y.), no. 2023YFA1508600 (X.Q.) and no. 2021YFA1500104 (A.L.), National Natural Science Foundation of China no. 22031008 (A.L.) and no. 22201222 (X.Q.), Science Foundation of Wuhan no. 2020010601012192 (A.L.), and China Postdoctoral Science Foundation no. 2022M722455 (S.W.) and the supercomputing system in the Supercomputing Center of Wuhan University (X.Q.). We thank the Core Facility of Wuhan University for the measurement of TAS.

Author information

Authors and Affiliations

Contributions

A.L. and S.W. conceived the work. S.W., H.Y., X.L., Y.-H.C. and A.L. designed the experiments and analysed the data. X.L., Y.W., S.W., X.W. and D.R. performed the synthetic experiments. S.W. and P.W. contributed to EPR data. Z.L., Y.Y. and X.Q. contributed to the DFT calculation. S.W. wrote the original paper, which was revised by all authors.

Corresponding authors

Correspondence to Xiaotian Qi, Hong Yi or Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Chen Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–6, Discussion for scope limitations and Product derivatization.

Supplementary Data 1

The computational structures used in this study.

Supplementary Data 2

NMR spectra of starting materials.

Supplementary Data 3

NMR spectra of products.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Luo, X., Wang, Y. et al. Radical-triggered translocation of C–C double bond and functional group. Nat. Chem. 16, 1621–1629 (2024). https://doi.org/10.1038/s41557-024-01633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01633-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing