Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular alkene synthesis from carboxylic acids, alcohols and alkanes via integrated photocatalysis

Abstract

Alkenes serve as versatile building blocks in diverse organic transformations. Despite notable advancements in olefination methods, a general strategy for the direct conversion of carboxylic acids, alcohols and alkanes into alkenes remains a formidable challenge owing to their inherent reactivity disparities. Here we demonstrate an integrated photochemical strategy that facilitates a one-pot conversion of these fundamental building blocks into alkenes through a sequential C(sp3)–C(sp3) bond formation–fragmentation process, utilizing an easily accessible and recyclable phenyl vinyl ketone as the ‘olefination reagent’. This practical method not only offers an unparalleled paradigm for accessing value-added alkenes from abundant and inexpensive starting materials but also showcases its versatility through various complex scenarios, including late-stage on-demand olefination of multifunctional molecules, chain homologation of acids and concise syntheses of bioactive molecules. Moreover, initiating from carboxylic acids, alcohols and alkanes, this protocol presents a complementary approach to traditional olefination methods, making it a highly valuable addition to the research toolkit for alkene synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of alkenes from diverse building blocks.
Fig. 2: The on-demand site-selective olefination of complex molecules bearing multiple functionalities.
Fig. 3: Synthetic applications.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Patai, S. The Chemistry of Alkenes (Wiley, 1964).

  2. Clayden, J., Greeves, N., Warren, S. & Wothers, P. Organic Chemistry (Oxford Univ. Press, 2011).

  3. Takeda, T. Modern carbonyl olefination—methods and applications. Synthesis 2004, 1532 (2004).

    Article  Google Scholar 

  4. Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, X., Jordan, F. & Szostak, M. Transition-metal-catalyzed decarbonylation of carboxylic acids to olefins: exploiting acyl C–O activation for the production of high value products. Org. Chem. Front. 5, 2515–2521 (2018).

    Article  CAS  Google Scholar 

  7. Chatterjee, A. & Jensen, V. R. A heterogeneous catalyst for the transformation of fatty acids to α-olefins. ACS Catal. 7, 2543–2547 (2017).

    Article  CAS  Google Scholar 

  8. Sun, X., Chen, J. & Ritter, T. Catalytic dehydrogenative decarboxyolefination of carboxylic acids. Nat. Chem. 10, 1229–1233 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen, V. T. et al. Alkene synthesis by photocatalytic chemoenzymatically compatible dehydrodecarboxylation of carboxylic acids and biomass. ACS Catal. 9, 9485–9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tlahuext-Aca, A., Candish, L., Garza-Sanchez, R. A. & Glorius, F. Decarboxylative olefination of activated aliphatic acids enabled by dual organophotoredox/copper catalysis. ACS Catal. 8, 1715–1719 (2018).

    Article  CAS  Google Scholar 

  11. Garrido-Castro, A. et al. Scalable electrochemical decarboxylative olefination driven by alternating polarity. Angew. Chem. Int. Ed. 62, e202309157 (2023).

    Article  CAS  Google Scholar 

  12. Lebel, H. & Paquet, V. Multicatalytic processes using diverse transition metals for the synthesis of alkenes. J. Am. Chem. Soc. 126, 11152–11153 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Merza, F., Taha, A. & Thiemann, T. Tandem-, domino- and one-pot reactions involving Wittig- and Horner-Wadsworth-Emmons olefination. Alkenes https://doi.org/10.5772/intechopen.70364 (InTech, 2017).

  14. Chakraborty, S., Das, U. K., Ben-David, Y. & Milstein, D. Manganese catalyzed α-olefination of nitriles by primary alcohols. J. Am. Chem. Soc. 139, 11710–11713 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Gordon, B. M., Lease, N., Emge, T. J., Hasanayn, F. & Goldman, A. S. Reactivity of iridium complexes of a triphosphorus-pincer ligand based on a secondary phosphine. Catalytic alkane dehydrogenation and the origin of extremely high activity. J. Am. Chem. Soc. 144, 4133–4146 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nat. Chem. 8, 157–161 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, K. et al. Selective dehydrogenation of small and large molecules by a chloroiridium catalyst. Sci. Adv. 8, eabo6586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voica, A., Mendoza, A., Gutekunst, W. R., Fraga, J. O. & Baran, P. S. Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parasram, M., Chuentragool, P., Wang, Y., Shi, Y. & Gevorgyan, V. General, auxiliary-enabled photoinduced Pd-catalyzed remote desaturation of aliphatic alcohols. J. Am. Chem. Soc. 139, 14857–14860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. West, J., Huang, D. & Sorensen, E. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  21. Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kumar, A., Bhatti, T. M. & Goldman, A. S. Dehydrogenation of alkanes and aliphatic groups by pincer-ligated metal complexes. Chem. Rev. 117, 12357–12385 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Edwards, J. T. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coyle, J. D. & Carless, H. A. J. Selected aspects of photochemistry. I Photochemistry of carbonyl compounds. Chem. Soc. Rev. 1, 465–480 (1972).

    Article  CAS  Google Scholar 

  25. Majhi, S. Applications of Norrish type I and II reactions in the total synthesis of natural products: a review. Photochem. Photobiol. Sci. 20, 1357–1378 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ito, Y. Photochemistry for Biomedical Applications (Springer Nature, 2018).

  27. Ledford, B. E. & Carreira, E. M. Total synthesis of (+)-trehazolin: optically active spirocycloheptadienes as useful precursors for the synthesis of aminocyclopentitols. J. Am. Chem. Soc. 117, 11811–11812 (1995).

    Article  CAS  Google Scholar 

  28. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2010).

    Article  PubMed  Google Scholar 

  32. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).

    Article  CAS  Google Scholar 

  34. Tang, H. et al. Direct synthesis of thioesters from feedstock chemicals and elemental sulfur. J. Am. Chem. Soc. 145, 5846–5854 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Cao, H. et al. Photo-induced decarboxylative Heck-type coupling of unactivated aliphatic acids and terminal alkenes in the absence of sacrificial hydrogen acceptors. J. Am. Chem. Soc. 140, 16360–16367 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Beil, S. B., Chen, T. Q., Intermaggio, N. E. & MacMillan, D. W. C. Carboxylic acids as adaptive functional groups in metallaphotoredox catalysis. Acc. Chem. Res. 55, 3481–3494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anwar, K., Merkens, K., Aguilar Troyano, F. J. & Gómez‐Suárez, A. Radical deoxyfunctionalisation strategies. Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.202200330 (2022).

  38. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. Z., Sakai, H. A. & MacMillan, D. W. C. Alcohols as alkylating agents: photoredox-catalyzed conjugate alkylation via in situ deoxygenation. Angew. Chem. Int. Ed. 61, e202207150 (2022).

    Article  CAS  Google Scholar 

  40. Cao, H. et al. Brønsted acid-enhanced direct hydrogen atom transfer photocatalysis for selective functionalization of unactivated C(sp3)–H bonds. Nat. Synth. 1, 794–803 (2022).

    Article  Google Scholar 

  41. Wagner, P. J. et al. Type II photoprocesses of phenyl ketones. Glimpse at the behavior of 1,4 biradicals. J. Am. Chem. Soc. 94, 7506–7512 (1972).

    Article  CAS  Google Scholar 

  42. Oelgemöller, M. & Hoffmann, N. Studies in organic and physical photochemistry—an interdisciplinary approach. Org. Biomol. Chem. 14, 7392–7442 (2016).

    Article  PubMed  Google Scholar 

  43. Christianson, D. W., Baggio, R. & Elbaum, D. Compositions and methods for inhibiting arginase activity. US patent 6,387,890B1 (2002).

  44. Lappin, G. R. Alpha Olefins Applications Handbook (CRC Press, 2019).

  45. Monti, L., Berliner, D. L., Jennings-White, C. L. & Adams, N. W. 17-Methylene-androstan-3α-ol analogs as CRH inhibitors. International patent WO 2002089814A1 (2002).

  46. Ziegler, F. E., Berlin, M. Y., Lee, K. & Looker, A. R. Formation of 9,10-unsaturation in the mitomycins: facile fragmentation of β-alkyl-β-aryl-α-oxo-γ-butyrolactones. Org. Lett. 2, 3619–3621 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Schwertz, G. et al. Synthesis of amorpha-4,11-diene from dihydroartemisinic acid. Tetrahedron 75, 743–748 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tückmantel, W. & Kozikowski, A. P. Intermediates useful for the synthesis of huperzine A. US patent 6,271,379B1 (2001).

  49. Coughlin, D. J. & Salomon, R. G. New synthetic approach to 4-alkyIidenecyclohexenes. Reduction-protodesilylation of benzylsilanes. J. Org. Chem. 22, 3784–3790 (1979).

    Article  Google Scholar 

  50. Pollini, G. P., Benetti, S., Risi, C. D. & Zanirato, V. Hagemann’s ester: a timeless building block for natural product synthesis. Tetrahedron 66, 2775–2802 (2010).

    Article  CAS  Google Scholar 

  51. Levterov, V. V. et al. 2-Oxabicyclo[2,2,2]octane as a new bioisostere of the phenyl ring. Nat. Commun. 14, 5608 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bugarin, A., Jones, K. D. & Connell, B. T. Efficient, direct α-methylenation of carbonyls mediated by diisopropylammonium trifluoroacetate. Chem. Commun. 46, 1715–1717 (2010).

    Article  CAS  Google Scholar 

  53. Song, L. et al. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nat. Catal. 5, 832–838 (2022).

    Article  CAS  Google Scholar 

  54. Börjesson, M., Moragas, T. & Martin, R. Ni-catalyzed carboxylation of unactivated alkyl chlorides with CO2. J. Am. Chem. Soc. 138, 7504–7507 (2016).

    Article  PubMed  Google Scholar 

  55. Parikh, A., Parikh, H. & Parikh, K. Arndt-Eistert Reaction. Name Reactions in Organic Synthesis (ed Surrey, A. R.) 3–6 (Foundation Books, 2006).

  56. Rodriguez, C. R. et al. Synthesis and biological activity of fluorinated analogues of the DAF-12 receptor antagonist 24-hydroxy-4-cholen-3-one. Steroids 151, 108469 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Z.-Q. et al. Difluoromethylation of unactivated alkenes using freon-22 through tertiary amine-borane-triggered halogen atom transfer. J. Am. Chem. Soc. 144, 14288–14296 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Stefani, H. A., Costa, I. M. & Zeni, G. Synthesis of polyacetylenic montiporic acids A and B. Tetrahedron Lett. 40, 9215–9217 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Research Foundation, the Prime Minister’s Office of Singapore under its NRF-CRP programme (award NRFCRP25-2020RS-0002), the Ministry of Education (MOE) of Singapore (MOET2EP10120-0014 and MOET2EP10121-0004), NUS (Suzhou) Research Institute, National Natural Science Foundation of China (grant nos. 22071170 and 92156025) and the National Key Research and Development Program of China (2019YFA0905100) for the financial support provided. We thank H. Ting Ang (NUS), M. Wai Liaw (NUS) and H. Cao (University of Basel) for their valuable proofreading assistance on the manuscript.

Author information

Authors and Affiliations

Contributions

H.Z., J.-A.M., Y.Z. and J.W. designed and analysed the experiments. H.Z. and R.Y. conducted the experiments. H.Z., J.-A.M., Y.Z. and J.W. wrote the manuscript. J.W. guided the whole project.

Corresponding authors

Correspondence to Yu Zhao, Jun-An Ma or Jie Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Zhiwei Zuo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–13, Materials and methods, Experimental procedures, Mechanistic studies, Characterization data, Substrate limitation and extension and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Yin, R., Zhao, Y. et al. Modular alkene synthesis from carboxylic acids, alcohols and alkanes via integrated photocatalysis. Nat. Chem. 16, 1822–1830 (2024). https://doi.org/10.1038/s41557-024-01642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01642-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing