Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport

Abstract

Fuelled chemical systems have considerable functional potential that remains largely unexplored. Here we report an approach to transient amide bond formation and use it to harness chemical energy and convert it to mechanical motion by integrating dissipative self-assembly and the Marangoni effect in a source–sink system. Droplets are formed through dissipative self-assembly following the reaction of octylamine with 2,3-dimethylmaleic anhydride. The resulting amides are hydrolytically labile, making the droplets transient, which enables them to act as a source of octylamine. A sink for octylamine was created by placing a drop of oleic acid at the air–water interface. This source–sink system sets up a gradient in surface tension, which gives rise to a macroscopic Marangoni flow that can transport the droplets in solution with tunable speed. Carbodiimides can fuel this motion by converting diacid waste back to anhydride. This study shows how fuelling at the molecular level can, via assembly at the supramolecular level, lead to liquid flow at the macroscopic level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically fuelled droplet formation and Marangoni convection.
Fig. 2: Droplet characterization and evidence for autopoiesis.
Fig. 3: Transient droplet formation without and with chemical fuelling.
Fig. 4: Chemically sustained Marangoni flow.

Similar content being viewed by others

Data availability

The UPLC data reported and analysed in this Article and its Supplementary Information are in the form of integrated peak areas and exported traces of representative chromatograms. All of the underlying chromatograms are stored locally in their native format. Owing to the large number of files, these are not provided with the supporting material but are available from the authors upon reasonable request. Source data are provided with this paper.

Code availability

The python code for the model is provided in the Supplementary Information.

References

  1. Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).

    CAS  PubMed  Google Scholar 

  2. Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Prigogine, I. & Nicolis, G. Biological order, structure and instabilities1. Q. Rev. Biophys. 4, 107–148 (1971).

    CAS  PubMed  Google Scholar 

  4. van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    PubMed  Google Scholar 

  5. Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    CAS  PubMed  Google Scholar 

  6. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    CAS  PubMed  Google Scholar 

  7. Heinen, L. & Walther, A. Celebrating Soft Matter’s 10th anniversary: approaches to program the time domain of self-assemblies. Soft Matter 11, 7857–7866 (2015).

    CAS  PubMed  Google Scholar 

  8. van Rossum, S. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    PubMed  Google Scholar 

  9. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS  PubMed  Google Scholar 

  10. Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

    Google Scholar 

  11. Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  PubMed  Google Scholar 

  12. Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    CAS  PubMed  Google Scholar 

  13. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

    CAS  PubMed  Google Scholar 

  15. Bal, S., Ghosh, C., Ghosh, T., Vijayaraghavan, R. K. & Das, D. Non‐equilibrium polymerization of cross‐β amyloid peptides for temporal control of electronic properties. Angew. Chem. Int. Ed. 58, 244–247 (2020).

    Google Scholar 

  16. Wang, S., Yue, L., Wulf, V., Lilienthal, S. & Willner, I. Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions. J. Am. Chem. Soc. 142, 17480–17488 (2020).

    CAS  PubMed  Google Scholar 

  17. Che, H., Cao, S. & van Hest, J. C. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 140, 5356–5359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Späth, F. et al. Molecular design of chemically fueled peptide–polyelectrolyte coacervate-based assemblies. J. Am. Chem. Soc. 143, 4782–4789 (2021).

    PubMed  Google Scholar 

  20. Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid–liquid phase separation. Chem 6, 3329–3343 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Giuseppone, N. & Walther, A. (eds) Out-of-Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021)

  22. Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    CAS  Google Scholar 

  23. Wachtel, A., Rao, R. & Esposito, M. Free-energy transduction in chemical reaction networks: from enzymes to metabolism. J. Chem. Phys. 157, 024109 (2022).

    CAS  PubMed  Google Scholar 

  24. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. te Brinke, E. et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat. Nanotechnol. 13, 849–855 (2018).

    Google Scholar 

  26. Cheng, G. & Perez-Mercader, J. Dissipative self-assembly of dynamic multicompartmentalized microsystems with light-responsive behaviors. Chem 6, 1160–1171 (2020).

    CAS  Google Scholar 

  27. Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).

    CAS  PubMed  Google Scholar 

  28. Hwang, I. et al. Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nat. Chem. 12, 808–813 (2020).

    CAS  PubMed  Google Scholar 

  29. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    CAS  PubMed  Google Scholar 

  30. Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol. 13, 114–121 (2003).

    CAS  PubMed  Google Scholar 

  31. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    CAS  Google Scholar 

  32. Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro‐ and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Google Scholar 

  33. Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 12, 4686–4703 (2016).

    CAS  PubMed  Google Scholar 

  34. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    CAS  PubMed  Google Scholar 

  35. Hanczyc, M. M., Toyota, T., Ikegami, T., Packard, N. & Sugawara, T. Fatty acid chemistry at the oil–water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007).

    CAS  PubMed  Google Scholar 

  36. Babu, D. et al. Acceleration of lipid reproduction by emergence of microscopic motion. Nat. Commun. 12, 2959 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakata, S. & Murakami, M. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants. Langmuir 26, 2414–2417 (2010).

    CAS  PubMed  Google Scholar 

  38. Čejková, J., Novák, M., Stěpánek, F. & Hanczyc, M. M. Dynamics of chemotactic droplets in salt concentration gradients. Langmuir 30, 11937–11944 (2014).

    PubMed  Google Scholar 

  39. Varanakkottu, S. N. et al. Particle manipulation based on optically controlled free surface hydrodynamics. Angew. Chem. Int. Ed. 52, 7291–7295 (2013).

    CAS  Google Scholar 

  40. Scriven, L. & Sternling, C. The Marangoni effects. Nature 187, 186–188 (1960).

    Google Scholar 

  41. Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S. & Matsui, H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng, M. et al. Parallel and precise macroscopic supramolecular assembly through prolonged Marangoni motion. Angew. Chem. Int. Ed. 57, 14106–14110 (2018).

    CAS  Google Scholar 

  43. Nguindjel, A.-D. C. & Korevaar, P. A. Self-sustained Marangoni flows driven by chemical reactions. ChemSystemsChem 3, e2100021 (2021).

    CAS  Google Scholar 

  44. Kirby, A. & Lancaster, P. Structure and efficiency in intramolecular and enzymic catalysis. Catalysis of amide hydrolysis by the carboxy-group of substituted maleamic acids. J. Chem. Soc. Perkin Trans. 2 9, 1206–1214 (1972).

    Google Scholar 

  45. Kirby, A. J. Effective molarities for intramolecular reactions. Adv. Phys. Org. Chem. 17, 183–278 (1980).

    CAS  Google Scholar 

  46. Karaman, R. Analyzing the efficiency in intramolecular amide hydrolysis of Kirby’s N-alkylmaleamic acids – a computational approach. Comput. Theor. Chem. 974, 133–142 (2011).

    CAS  Google Scholar 

  47. Su, S., Du, F.-S. & Li, Z.-C. Synthesis and pH-dependent hydrolysis profiles of mono-and dialkyl substituted maleamic acids. Org. Biomol. Chem. 15, 8384–8392 (2017).

    CAS  PubMed  Google Scholar 

  48. Astoricchio, E., Alfano, C., Rajendran, L., Temussi, P. A. & Pastore, A. The wide world of coacervates: from the sea to neurodegeneration. Trends Biochem. Sci. 45, 706–717 (2020).

    CAS  PubMed  Google Scholar 

  49. Douliez, J.-P. et al. Catanionic coacervate droplets as a surfactant‐based membrane‐free protocell model. Angew. Chem. Int. Ed. 56, 13689–13693 (2017).

    CAS  Google Scholar 

  50. Walde, P., Wick, R., Fresta, M., Mangone, A. & Luisi, P. L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994).

    CAS  Google Scholar 

  51. Bender, M. L., Chow, Y.-L. & Chloupek, F. Intramolecular catalysis of hydrolytic reactions. II. The hydrolysis of phthalamic acid. J. Am. Chem. Soc. 80, 5380–5384 (1958).

    CAS  Google Scholar 

  52. Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Nakajima, N. & Ikada, Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate Chem. 6, 123–130 (1995).

    CAS  Google Scholar 

  54. Schwarz, P. S., Tena-Solsona, M., Dai, K. & Boekhoven, J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem. Commum. 58, 1284–1297 (2022).

    CAS  Google Scholar 

  55. Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    CAS  PubMed  Google Scholar 

  56. Meredith, C. H. et al. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12, 1136–1142 (2020).

    CAS  PubMed  Google Scholar 

  57. Banerjee, A. & Squires, T. M. Long-range, selective, on-demand suspension interactions: combining and triggering soluto-inertial beacons. Sci. Adv. 5, eaax1893 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Courier Corporation, 2013)

  59. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    CAS  PubMed  Google Scholar 

  60. Martin, N. & Douliez, J.-P. Fatty acid vesicles and coacervates as model prebiotic protocells. ChemSystemsChem 3, e2100024 (2021).

    CAS  Google Scholar 

  61. Singh, N., Formon, G. J., De Piccoli, S. & Hermans, T. M. Devising synthetic reaction cycles for dissipative nonequilibrium self‐assembly. Adv. Mater. 32, 1906834 (2020).

    CAS  Google Scholar 

  62. Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2021).

    CAS  Google Scholar 

  63. Markovitch, O., Ottelé, J., Veldman, O. & Otto, S. Automated device for continuous stirring while sampling in liquid chromatography systems. Commun. Chem. 3, 180 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, D., Christian, W. & Hanson, R. Tracker video analysis and modeling tool for physics education. https://physlets.org/tracker/ (2011).

  66. Barba, L. A. & Forsyth, G. F. CFD Python: the 12 steps to Navier-Stokes equations. J. Open Source Educ. 2, 21 (2018).

    Google Scholar 

  67. Sahin, M. & Owens, R. G. A novel fully implicit finite volume method applied to the lid‐driven cavity problem—part I: high Reynolds number flow calculations. Int. J. Numer. Methods Fluids. 42, 57–77 (2003).

    Google Scholar 

  68. Ghia, U., Ghia, K. N. & Shin, C. T. High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982).

    Google Scholar 

  69. Voudoukis, N. & Oikonomidis, S. Inverse square law for light and radiation: a unifying educational approach. Eur. J. Eng. Technol. Res. 2, 23–27 (2017).

    Google Scholar 

  70. Al-Mudhaf, A. & Chamkha, A. J. Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects. Heat Mass Transf. 42, 112–121 (2005).

    CAS  Google Scholar 

  71. Lin, Y. & Zheng, L. Marangoni boundary layer flow and heat transfer of copper–water nanofluid over a porous medium disk. AIP Adv. 5, 107225 (2015).

    Google Scholar 

  72. Diddens, C., Kuerten, J. G. M., van der Geld, C. W. M. & Wijshoff, H. M. A. Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426–436 (2017).

    CAS  PubMed  Google Scholar 

  73. Huber, M. L. et al. New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38, 101–125 (2009).

    CAS  Google Scholar 

  74. Rubio, A., Zalts, A. & El Hasi, C. Numerical solution of the advection–reaction–diffusion equation at different scales. Environ. Model. Softw. 23, 90–95 (2008).

    Google Scholar 

  75. Rapp, B. E. Microfluidics: Modeling, Mechanics and Mathematics 243–263 (Elsevier, 2017).

  76. Movchan, T. et al. Diffusion coefficients of ionic surfactants with different molecular structures in aqueous solutions. Colloid J. 77, 492–499 (2015).

    CAS  Google Scholar 

  77. Mirgorodskaya, A. et al. The influence of hydrophobic amines on hydrolysis of bis(p-nitrophenyl) methylphosphonate in micellar solutions of cetylpyridinium bromide. Russ. Chem. Bull. 49, 270–275 (2000).

    CAS  Google Scholar 

  78. Martínez-Balbuena, L., Arteaga-Jiménez, A., Hernández-Zapata, E. & Márquez-Beltrán, C. Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants. Adv. Colloid Interface Sci. 247, 178–184 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Katsonis, A. Ryabchun and D. Babu for helpful discussion and V. V. Krasnikov for performing the confocal experiments. This work was supported by the Dutch Ministry of Education, Culture and Science Gravitation program 024.001.035 (S.O.), the oLife Cofund program (A.W.P.B.), the ERC AdG 741774 (S.O.), the China Scholarship Council (J.W.) and a Marie Curie Individual Fellowship for K.L. (PSR 786350).

Author information

Authors and Affiliations

Authors

Contributions

S.O., K.L. and B.M.M. conceived and designed the project. K.L. performed the experiments and analysed the data. A.W.P.B., S.J.D. and S.H. performed the hydrodynamic modelling. J.W. performed some MS, dynamic light scattering and UPLC experiments. A.K. carried out the cryo-TEM and TEM experiments. All authors participated in the discussions. K.L. and S.O. wrote the paper.

Corresponding authors

Correspondence to Kai Liu or Sijbren Otto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Scott Hartley and Nishant Singh for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39 and Table 1.

Supplementary Video 1

The initial movement of amide-based droplets in a source–sink system prepared using 35 mM 1a (pH 8.2).

Supplementary Video 2

The initial movement of amide-based droplets in a source–sink system prepared using 35 mM 1b (pH 8.2).

Supplementary Video 3

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2).

Supplementary Video 4

The initial movement of amide-based droplets in a source–sink system prepared using 35 mM 1a (pH 8.8).

Supplementary Video 5

The movement of the droplets in Supplementary Video 1 upon prolonged observation.

Supplementary Video 6

The movement of the droplets in Supplementary Video 5 when new oleic acid was added.

Supplementary Video 7

The movement of polystyrene microspheres when the amides are all hydrolysed in Supplementary Video 5.

Supplementary Video 8

The initial movement of polystyrene microspheres when oleic acid was placed on an aqueous solution containing 2.

Supplementary Video 9

The movement of polystyrene microspheres in Supplementary Video 8 upon prolonged observation.

Supplementary Video 10

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2) before fuelling with EDC-HCl.

Supplementary Video 11

The initial movement of the droplets in Supplementary Video 10 when EDC-HCl and oleic acid were added.

Supplementary Video 12

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2) after the second addition of EDC-HCl fuel.

Supplementary Video 13

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2) after the third addition of EDC-HCl fuel.

Supplementary Video 14

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2) after the fourth addition of EDC-HCl fuel.

Supplementary Video 15

The initial movement of amide-based droplets in a source–sink system prepared using 45 mM 1a (pH 8.2) after the fifth addition of EDC-HCl fuel.

Supplementary Video 16

The initial movement of amide-based droplets that had almost completely hydrolysed in a source–sink system prepared using 45 mM 1a (pH 8.2) after new oleic acid was added.

Supplementary Video 17

The initial movement of amide-based droplets that had almost completely hydrolysed in a source–sink system prepared using 45 mM 1a (pH 8.2) after EDC-HCl was re-added.

Supplementary Code 1

Code for modelling the Marangoni flow.

Supplementary Data 1

Source data for Supplementary Figs. 6, 14, 15, 16, 17, 20, 21, 22, 24, 25, 27, 28, 31, 32, 34, 35, 36 and 39.

Source data

Source Data Fig. 2

Raw dynamic light scattering data; raw spectral data; absolute UPLC peak areas and the component concentration.

Source Data Fig. 3

Time-dependent spectral data; time-dependent size data; absolute UPLC peak areas and the component concentration.

Source Data Fig. 4

Raw modelling data; raw speed data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Blokhuis, A.W.P., Dijt, S.J. et al. Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport. Nat. Chem. 17, 124–131 (2025). https://doi.org/10.1038/s41557-024-01665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01665-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing