Abstract
Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals. Here we demonstrate the four-electron reduction of benzene and some of its derivatives using a samarium(ii) alkyl reagent, with no requirement for group I metals. Whereas organosamarium(ii) typically reacts through one-electron processes, the compounds reported here feature a rare two-electron process. Combined experimental and computational results implicate a transient samarium(i) intermediate involved in this reduction process, which ultimately provides the benzene tetra-anion. The remarkably strong reducing power of this samarium(ii) alkyl implies a rich reactivity, providing scope for its application as a reducing agent.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
All of the data generated or analysed during this study are included in the published article and its Supplementary Information files. X-ray crystallographic data for compounds 1–7, (BDIDicyp)K and (BDIDicyp)2Sm are available in the Supplementary Information and from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) under reference numbers 2244289 (1), 2244280 (2), 2244279 (3), 2244281 (4), 2244283 (5), 2244282 (6), 2244284 (7), 2244290 ((BDIDicyp)K) and 2359622 ((BDIDicyp)2Sm). Source data are provided with this paper.
References
Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Phil. Trans. R. Soc. Lond. 115, 440–466 (1825).
Wilson, J. Celebrating Michael Faraday’s discovery of benzene. Ambix 59, 241–265 (2012).
Hückel, E. Quantentheoretische beiträge zum benzolproblem. Z. Phys. 70, 204–286 (1931).
Mortensen, J. & Heinze, J. The electrochemical reduction of benzene—first direct determination of the reduction potential. Angew. Chem. Int. Ed. 23, 84–85 (1984).
Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).
Cassani, M. C., Gun’ko, Y. K., Hitchcock, P. B., Lappert, M. F. & Laschi, F. Synthesis and characterization of organolanthanidocene(iii) (Ln = La, Ce, Pr, Nd) complexes containing the 1,4-cyclohexa-2,5-dienyl ligand (benzene 1,4-dianion): structures of [K([18]-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)] [Cp“ = η5-C5H3(SiMe3)2-1,3; Ln = La, Ce, Nd]. Organometallics 18, 5539–5547 (1999).
Cassani, M. C., Duncalf, D. J. & Lappert, M. F. The first example of a crystalline subvalent organolanthanum complex: [K([18]crown-6)- (η2-C6H6)2][(LaCptt2)2(μ-η6:η6-C6H6)]•2C6H6 (Cptt = η5-C5H3But2-1,3). J. Am. Chem. Soc. 120, 12958–12959 (1998).
Cassani, M. C., Gun’ko, Y. K., Hitchcock, P. B. & Lappert, M. F. The first metal complexes containing the 1,4-cyclohexa-2,5-dienyl ligand (benzene 1,4-dianion); synthesis and structures of [K(18-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)](Ln = La, Ce). Chem. Commun. 16, 1987–1988 (1996).
Palumbo, C. T. et al. Structure, magnetism, and multi-electron reduction reactivity of the inverse sandwich reduced arene La2+ complex [{[C5H3(SiMe3)2]2La}2(μ-η6:η6-C6H6)]1–. Organometallics 37, 3322–3331 (2018).
Kotyk, C. M., MacDonald, M. R., Ziller, J. W. & Evans, W. J. Reactivity of the Ln2+ complexes [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln]: reduction of naphthalene and biphenyl. Organometallics 34, 2287–2295 (2015).
Kotyk, C. M. et al. Isolation of +2 rare earth metal ions with three anionic carbocyclic rings: bimetallic bis(cyclopentadienyl) reduced arene complexes of La2+ and Ce2+ are four electron reductants. Chem. Sci. 6, 7267–7273 (2015).
Gould, C. A. et al. Isolation of a triplet benzene dianion. Nat. Chem. 13, 1001–1005 (2021).
Rösch, B. et al. Dinitrogen complexation and reduction at low-valent calcium. Science 371, 1125–1128 (2021).
Gentner, T. X. et al. Low valent magnesium chemistry with a super bulky β-diketiminate ligand. Angew. Chem. Int. Ed. 58, 607–611 (2019).
Brand, S. et al. Facile benzene reduction by a Ca2+/AlI Lewis acid/base combination. Angew. Chem. Int. Ed. 57, 14169–14173 (2018).
Arnold, P. L., Halliday, C. J. V., Puig-Urrea, L. & Nichol, G. S. Instantaneous and phosphine-catalyzed arene binding and reduction by U(iii) complexes. Inorg. Chem. 60, 4162–4170 (2021).
Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(iii) disproportionation. Nat. Chem. 4, 668–674 (2012).
Huang, W. et al. A six-carbon 10π-electron aromatic system supported by group 3 metals. Nat. Commun. 4, 1448 (2013).
Xiao, Y. et al. Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. Chem. Sci. 12, 227–238 (2021).
Huang, W. et al. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets. Inorg. Chem. 54, 2374–2382 (2015).
Patel, D. et al. A triamido-uranium(v) inverse-sandwich 10π-toluene tetraanion arene complex. Dalton Trans. 42, 5224–5227 (2013).
Patel, D. et al. A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).
Yu, C. et al. Arene-bridged dithorium complexes: inverse sandwiches supported by a δ bonding interaction. J. Am. Chem. Soc. 142, 21292–21297 (2020).
Thakur, S. K. et al. Similarities and differences in benzene reduction with Ca, Sr, Yb and Sm: strong evidence for tetra-anionic benzene. Angew. Chem. Int. Ed. 63, e202405229 (2024).
Wang, Y. et al. Neutral inverse-sandwich rare-earth metal complexes of the benzene tetraanion. Chem. Sci. 15, 8740–8749 (2024).
Richardson, G. M., Douair, I., Cameron, S. A., Maron, L. & Anker, M. D. Ytterbium (ii) hydride as a powerful multielectron reductant. Chem. Eur. J. 27, 13144–13148 (2021).
Richardson, G. M. et al. Synthesis and reactivity of discrete europium(ii) hydride complexes. Chem. Eur. J. 30, e202400681 (2024).
Richardson, G. M. et al. Hydroarylation of olefins catalysed by a dimeric ytterbium(ii) alkyl. Nat. Commun. 12, 3147 (2021).
Xue, M. et al. Catalytic addition of amines to carbodiimides by bis(β-diketiminate)lanthanide(ii) complexes and mechanistic studies. Dalton Trans. 44, 20075–20086 (2015).
Mironova, O. A., Sukhikh, T. S., Konchenko, S. N. & Pushkarevsky, N. A. Study of the possibility of using salt metathesis reactions for the synthesis of the neodymium and samarium β-diketiminate chalcogenide complexes. Unexpected reduction of Sm(iii) to Sm(ii). Russ. J. Coord. Chem. 46, 241–250 (2020).
Schmid, M., Guillaume, S. M. & Roesky, P. W. β-Diketiminate rare earth borohydride complexes: synthesis, structure, and catalytic activity in the ring-opening polymerization of ε-caprolactone and trimethylene carbonate. Organometallics 33, 5392–5401 (2014).
Liu, X., Wen, Q., Xiang, L., Leng, X. & Chen, Y. Samarium(ii) monoalkyl complex supported by a β-diketiminato-based tetradentate ligand: synthesis, structure, and catalytic hydrosilylation of internal alkynes. Chem. Eur. J. 26, 5494–5499 (2020).
Zhang, X. W. et al. Stable heteroleptic complexes of divalent lanthanides with bulky pyrazolylborate ligands—iodides, hydrocarbyls and triethylborohydrides. Dalton Trans. 40, 195–210 (2011).
Hou, Z., Zhang, Y., Nishiura, M. & Wakatsuki, Y. (Pentamethylcyclopentadienyl)lanthanide(ii) alkyl and silyl complexes: synthesis, structures, and catalysis in polymerization of ethylene and styrene. Organometallics 22, 129–135 (2003).
Thompson, M. E. et al. “σ Bond metathesis” for carbon–hydrogen bonds of hydrocarbons and Sc–R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the π system in electrophilic activation of aromatic and vinylic C–H bonds. J. Am. Chem. Soc. 109, 203–219 (1987).
Arnold, P. L., McMullon, M. W., Rieb, J. & Kühn, F. E. C–H bond activation by f-block complexes. Angew. Chem. Int. Ed. 54, 82–100 (2015).
Evans, W. J., Perotti, J. M. & Ziller, J. W. Synthetic utility of [(C5Me5)2Ln][(μ-Ph)2BPh2] in accessing [(C5Me5)2LnR]x unsolvated alkyl lanthanide metallocenes, complexes with high C–H activation reactivity. J. Am. Chem. Soc. 127, 3894–3909 (2005).
Bochkarev, M. N. Synthesis, arrangement, and reactivity of arene–lanthanide compounds. Chem. Rev. 102, 2089–2118 (2002).
Tian, X. et al. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem. Soc. Rev. 53, 263–316 (2024).
Meihaus, K. R., Fieser, M. E., Corbey, J. F., Evans, W. J. & Long, J. R. Record high single-ion magnetic moments through 4fn5d1 electron configurations in the divalent lanthanide complexes [(C5H4SiMe3)3Ln]−. J. Am. Chem. Soc. 137, 9855–9860 (2015).
Evans, W. J. & Ulibarri, T. A. Reactivity of (C5Me5)2Sm with cyclopentadiene and cyclopentadienide: isolation of the mixed-valence complex (C5Me5)2Sm(III)(μ-C5H5)Sm(II)(C5Me5)2. J. Am. Chem. Soc. 109, 4292–4297 (1987).
Evans, W. J., Drummond, D. K., Bott, S. G. & Atwood, J. L. Reductive distortion of azobenzene by an organosamarium(ii) reagent to form [(C5Me5)2Sm]2(C6H5)2N2: an X-ray crystallographic snapshot of an agostic hydrogen complex on an ortho-metalation reaction coordinate. Organometallics 5, 2389–2391 (1986).
Evans, W. J., Grate, J. W. & Doedens, R. J. Organolanthanide and organoyttrium hydride chemistry. 7. Reaction of the samarium–hydrogen bond in the organosamarium hydride [(C5Me5)2SmH]2 with carbon monoxide: formation, isomerization, and X-ray crystallographic characterization of the samarium complexes cis- and trans-{(C5Me5)2[(C6H5)3PO]Sm}2(μ-OCH:CHO). J. Am. Chem. Soc. 107, 1671–1679 (1985).
Evans, W. J., Grate, J. W., Bloom, I., Hunter, W. E. & Atwood, J. L. Synthesis and X-ray crystallographic characterization of an oxo-bridged bimetallic organosamarium complex, [(C5Me5)2Sm]2(μ-O). J. Am. Chem. Soc. 107, 405–409 (1985).
Lang, L., Ravera, E., Parigi, G., Luchinat, C. & Neese, F. Theoretical analysis of the long-distance limit of NMR chemical shieldings. J. Chem. Phys. 156, 154115 (2022).
Bertini, I., Luchinat, C. & Parigi, G. Magnetic susceptibility in paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 40, 249–273 (2002).
Wedal, J. C. & Evans, W. J. A rare-earth metal retrospective to stimulate all fields. J. Am. Chem. Soc. 143, 18354–18367 (2021).
Evans, W. J. Perspectives in reductive lanthanide chemistry. Coord. Chem. Rev. 206–207, 263–283 (2000).
Evans, W. J. The importance of questioning scientific assumptions: some lessons from f element chemistry. Inorg. Chem. 46, 3435–3449 (2007).
Brownstein, S., Dunogues, J., Lindsay, D. & Ingold, K. U. Conformation and rotational barriers in sym-tetra-tert-butylethane and sym-tetra(trimethylsilyl)ethane. J. Am. Chem. Soc. 99, 2073–2078 (1977).
Laskowski, C. A. et al. Synthesis and reactivity of two-coordinate Ni(i) alkyl and aryl complexes. J. Am. Chem. Soc. 135, 18272–18275 (2013).
Attar, F. et al. Advanced electron paramagnetic resonance in chemical energy conversion: current status and future potential. Energy Environ. Sci. 17, 3307–3328 (2024).
Goodwin, C. A. P., Reta, D., Ortu, F., Chilton, N. F. & Mills, D. P. Synthesis and electronic structures of heavy lanthanide metallocenium cations. J. Am. Chem. Soc. 139, 18714–18724 (2017).
Ortu, F. et al. Analysis of lanthanide-radical magnetic interactions in Ce(iii) 2,2′-bipyridyl complexes. Inorg. Chem. 56, 2496–2505 (2017).
Goodwin, C. A. P. et al. Physicochemical properties of near-linear lanthanide(ii) bis(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 55, 10057–10067 (2016).
Goodwin, C. A. P. et al. Investigation into the effects of a trigonal-planar ligand field on the electronic properties of lanthanide(ii) tris(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 56, 5959–5970 (2017).
Bünzli, J.-C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39, 53–61 (2006).
Ogawa, A. et al. Photoinduced reduction of group 16 heteroatom compounds with the aid of samarium diiodide. Tetrahedron Lett. 39, 6341–6342 (1998).
Sumino, Y., Harato, N., Tomisaka, Y. & Ogawa, A. A novel photoinduced reduction system of low-valent samarium species: reduction of organic halides and chalcogenides, and its application to carbonylation with carbon monoxide. Tetrahedron 59, 10499–10508 (2003).
Zinnen, H. A., Pluth, J. J. & Evans, W. J. X-ray crystallographic determination of the structure of bis(methyl-cyclopentadienyl)ytterbium tetrahydrofuranate and its ready formation by four new routes. J. Chem. Soc. J. Chem. Soc. 1980, 810–812 (1980).
Fieser, M. E., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. Dinitrogen reduction via photochemical activation of heteroleptic tris(cyclopentadienyl) rare-earth complexes. J. Am. Chem. Soc. 135, 3804–3807 (2013).
Fieser, M. E. et al. Dinitrogen reduction, sulfur reduction, and isoprene polymerization via photochemical activation of trivalent bis(cyclopentadienyl) rare-earth-metal allyl complexes. Organometallics 34, 4387–4393 (2015).
Werkema, E. L. et al. Hydrogen for X-group exchange in CH3X (X = Cl, Br, I, OMe, and NMe2) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental andcomputational support for a carbenoid mechanism.Organometallics 28, 3173–3185 (2009).
Werkema, E. L., Andersen, R. A., Yahia, A., Maron, L. & Eisenstein, O. Hydrogen for X-group exchange in CH3X (X = Cl, Br, I, OMe, and NMe2) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational support for a carbenoid mechanism. Organometallics 28, 3173–3185 (2009).
Werkema, E. L., Yahia, A., Maron, L., Eisenstein, O. & Andersen, R. A. Bridging silyl groups in σ-bond metathesis and [1,2]-shifts. Experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3. Organometallics 29, 5103–5110 (2010).
Guihaumé, J. et al. Facile interconversion of [Cp2(Cl)Hf(SnH3)] and [Cp2(Cl)Hf(μ-H)SnH2]: DFT investigations of hafnocene stannyl complexes as masked stannylenes. Angew. Chem. Int. Ed. 49, 1816–1819 (2010).
Maron, L. & Eisenstein, O. Do f electrons play a role in the lanthanide-ligand bonds? A DFT study of Ln(NR2)3; R = H, SiH3. J. Phys. Chem. A 104, 7140–7143 (2000).
Scientific Colour Maps v.8.0.1 (Fabio Crameri, 2020); http://www.fabiocrameri.ch/colourmaps
Lewe, N. et al. Comparison of chemical profiles of Kānuka (Kunzea robusta de Lange & Toelken, Myrtaceae) essential oils. Phytochem. Lett. 56, 50–56 (2023).
Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).
Oleinik, I. I., Oleinik, I. V., Abdrakhmanov, I. B., Ivanchev, S. S. & Tolstikov, G. A. Design of arylimine postmetallocene catalytic systems for olefin polymerization: I. Synthesis of substituted 2-cycloalkyl- and 2,6-dicycloalkylanilines. Russ. J. Gen. Chem. 74, 1423–1427 (2004).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Dolg, M., Stoll, H., Savin, A. & Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 75, 173–194 (1989).
Dolg, M., Stoll, H. & Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 85, 441–450 (1993).
Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).
Höllwarth, A. et al. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al–Bi and f-type polarization functions for Zn, Cd, Hg. Chem. Phys. Lett. 208, 237–240 (1993).
Ditchfield, R., Hehre, W. J. & Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).
Acknowledgements
M.D.A. acknowledges government funding from the Royal Society Te Apārangi for support through a Marsden Fast-Start Grant (21-VUW-120) and Rutherford Discovery Fellowship (22-VUW-016). We are grateful for a Curtis-Gordon Research Scholarship and Victoria University of Wellington Doctoral Scholarship (to G.M.R. and F.M.B.). We also thank the MacDiarmid Institute (B.D.N.) for providing financial support. N.F.C. thanks the National Computational Infrastructure for computational resources via the Australian National University Merit Allocation Scheme.
Author information
Authors and Affiliations
Contributions
G.M.R. carried out the organometallic synthetic and reaction studies. T.R., N.F.C. and L.M. conducted the computational analysis. F.M.B., B.D.N. and J.E.H. developed the organic synthesis. R.A.K. conducted all of the GC–MS analyses. T.B., S.G. and L.L. conducted all of the superconducting quantum interference device measurements and interpreted the data. S.A.C. conducted the crystallographic studies and initiated the organic synthesis. J.L., L.F.L., J.H., M.D.A., N.F.C. and N.C. carried out the EPR studies. G.M.R. and N.J.L.K.D. conducted all of the photochemical studies. N.F.C., N.C., L.M. and M.D.A. wrote the manuscript. L.M. and M.D.A. managed the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks S. Chantal Stieber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Supplementary information
Supplementary Information
Synthetic, solution, solid-state and computational analyses and Supplementary Figs. 1–75and Tables 1–11.
Supplementary Dataset 1
Optimized coordinates for the calculated structures.
Supplementary Dataset 2
Crystallographic data for [(BDIDicyp)K] (CCDC 2244290).
Supplementary Dataset 3
Crystallographic data for compound 1 (CCDC 2244289).
Supplementary Dataset 4
Crystallographic data for compound 2 (CCDC 2244280).
Supplementary Dataset 5
Crystallographic data for compound 3 (CCDC 2244279).
Supplementary Dataset 6
Crystallographic data for compound 4 (CCDC 2244281).
Supplementary Dataset 7
Crystallographic data for compound 5 (CCDC 2244283).
Supplementary Dataset 8
Crystallographic data for compound 6 (CCDC 2244282).
Supplementary Dataset 9
Crystallographic data for compound 7 (CCDC 2244284).
Supplementary Dataset 10
Crystallographic data for compound (BDIDicyp)2Sm (CCDC 2359622).
Source data
Source Data Fig. 4
Time dependence of the EPR intensity of the organic radical signal at 170 K.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Richardson, G.M., Rajeshkumar, T., Burke, F.M. et al. Four-electron reduction of benzene by a samarium(ii)-alkyl without the addition of external reducing agents. Nat. Chem. 17, 20–28 (2025). https://doi.org/10.1038/s41557-024-01688-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41557-024-01688-6


