Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Four-electron reduction of benzene by a samarium(ii)-alkyl without the addition of external reducing agents

Abstract

Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals. Here we demonstrate the four-electron reduction of benzene and some of its derivatives using a samarium(ii) alkyl reagent, with no requirement for group I metals. Whereas organosamarium(ii) typically reacts through one-electron processes, the compounds reported here feature a rare two-electron process. Combined experimental and computational results implicate a transient samarium(i) intermediate involved in this reduction process, which ultimately provides the benzene tetra-anion. The remarkably strong reducing power of this samarium(ii) alkyl implies a rich reactivity, providing scope for its application as a reducing agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced arene complexes of the lanthanides and actinides.
Fig. 2: Synthesis and molecular structure of Sm(ii) alkyl 3.
Fig. 3: Synthesis, molecular structure and structural data of tetra-anionic arene complexes 46.
Fig. 4: Reaction of Sm(ii) alkyl 3 with COT.
Fig. 5: Photolytic reduction of 3 and reduction of 2 by KC8 to provide 3-(I) before the four-electron reduction of benzene.
Fig. 6: Computed enthalpy pathway for the reaction of Sm(ii) alkyl 3 with benzene.

Similar content being viewed by others

Data availability

All of the data generated or analysed during this study are included in the published article and its Supplementary Information files. X-ray crystallographic data for compounds 17, (BDIDicyp)K and (BDIDicyp)2Sm are available in the Supplementary Information and from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) under reference numbers 2244289 (1), 2244280 (2), 2244279 (3), 2244281 (4), 2244283 (5), 2244282 (6), 2244284 (7), 2244290 ((BDIDicyp)K) and 2359622 ((BDIDicyp)2Sm). Source data are provided with this paper.

References

  1. Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Phil. Trans. R. Soc. Lond. 115, 440–466 (1825).

    Google Scholar 

  2. Wilson, J. Celebrating Michael Faraday’s discovery of benzene. Ambix 59, 241–265 (2012).

    CAS  Google Scholar 

  3. Hückel, E. Quantentheoretische beiträge zum benzolproblem. Z. Phys. 70, 204–286 (1931).

    Google Scholar 

  4. Mortensen, J. & Heinze, J. The electrochemical reduction of benzene—first direct determination of the reduction potential. Angew. Chem. Int. Ed. 23, 84–85 (1984).

    Google Scholar 

  5. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  6. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  PubMed  Google Scholar 

  7. Cassani, M. C., Gun’ko, Y. K., Hitchcock, P. B., Lappert, M. F. & Laschi, F. Synthesis and characterization of organolanthanidocene(iii) (Ln = La, Ce, Pr, Nd) complexes containing the 1,4-cyclohexa-2,5-dienyl ligand (benzene 1,4-dianion): structures of [K([18]-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)] [Cp“ = η5-C5H3(SiMe3)2-1,3; Ln = La, Ce, Nd]. Organometallics 18, 5539–5547 (1999).

  8. Cassani, M. C., Duncalf, D. J. & Lappert, M. F. The first example of a crystalline subvalent organolanthanum complex: [K([18]crown-6)- (η2-C6H6)2][(LaCptt2)2(μ-η66-C6H6)]•2C6H6 (Cptt = η5-C5H3But2-1,3). J. Am. Chem. Soc. 120, 12958–12959 (1998).

  9. Cassani, M. C., Gun’ko, Y. K., Hitchcock, P. B. & Lappert, M. F. The first metal complexes containing the 1,4-cyclohexa-2,5-dienyl ligand (benzene 1,4-dianion); synthesis and structures of [K(18-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)](Ln = La, Ce). Chem. Commun. 16, 1987–1988 (1996).

  10. Palumbo, C. T. et al. Structure, magnetism, and multi-electron reduction reactivity of the inverse sandwich reduced arene La2+ complex [{[C5H3(SiMe3)2]2La}2(μ-η66-C6H6)]1–. Organometallics 37, 3322–3331 (2018).

    CAS  Google Scholar 

  11. Kotyk, C. M., MacDonald, M. R., Ziller, J. W. & Evans, W. J. Reactivity of the Ln2+ complexes [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln]: reduction of naphthalene and biphenyl. Organometallics 34, 2287–2295 (2015).

    CAS  Google Scholar 

  12. Kotyk, C. M. et al. Isolation of +2 rare earth metal ions with three anionic carbocyclic rings: bimetallic bis(cyclopentadienyl) reduced arene complexes of La2+ and Ce2+ are four electron reductants. Chem. Sci. 6, 7267–7273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gould, C. A. et al. Isolation of a triplet benzene dianion. Nat. Chem. 13, 1001–1005 (2021).

    CAS  PubMed  Google Scholar 

  14. Rösch, B. et al. Dinitrogen complexation and reduction at low-valent calcium. Science 371, 1125–1128 (2021).

    PubMed  Google Scholar 

  15. Gentner, T. X. et al. Low valent magnesium chemistry with a super bulky β-diketiminate ligand. Angew. Chem. Int. Ed. 58, 607–611 (2019).

    CAS  Google Scholar 

  16. Brand, S. et al. Facile benzene reduction by a Ca2+/AlI Lewis acid/base combination. Angew. Chem. Int. Ed. 57, 14169–14173 (2018).

    CAS  Google Scholar 

  17. Arnold, P. L., Halliday, C. J. V., Puig-Urrea, L. & Nichol, G. S. Instantaneous and phosphine-catalyzed arene binding and reduction by U(iii) complexes. Inorg. Chem. 60, 4162–4170 (2021).

    CAS  PubMed  Google Scholar 

  18. Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(iii) disproportionation. Nat. Chem. 4, 668–674 (2012).

  19. Huang, W. et al. A six-carbon 10π-electron aromatic system supported by group 3 metals. Nat. Commun. 4, 1448 (2013).

    PubMed  Google Scholar 

  20. Xiao, Y. et al. Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. Chem. Sci. 12, 227–238 (2021).

    CAS  Google Scholar 

  21. Huang, W. et al. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets. Inorg. Chem. 54, 2374–2382 (2015).

    CAS  PubMed  Google Scholar 

  22. Patel, D. et al. A triamido-uranium(v) inverse-sandwich 10π-toluene tetraanion arene complex. Dalton Trans. 42, 5224–5227 (2013).

    CAS  PubMed  Google Scholar 

  23. Patel, D. et al. A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).

    CAS  Google Scholar 

  24. Yu, C. et al. Arene-bridged dithorium complexes: inverse sandwiches supported by a δ bonding interaction. J. Am. Chem. Soc. 142, 21292–21297 (2020).

    CAS  PubMed  Google Scholar 

  25. Thakur, S. K. et al. Similarities and differences in benzene reduction with Ca, Sr, Yb and Sm: strong evidence for tetra-anionic benzene. Angew. Chem. Int. Ed. 63, e202405229 (2024).

    CAS  Google Scholar 

  26. Wang, Y. et al. Neutral inverse-sandwich rare-earth metal complexes of the benzene tetraanion. Chem. Sci. 15, 8740–8749 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Richardson, G. M., Douair, I., Cameron, S. A., Maron, L. & Anker, M. D. Ytterbium (ii) hydride as a powerful multielectron reductant. Chem. Eur. J. 27, 13144–13148 (2021).

    CAS  PubMed  Google Scholar 

  28. Richardson, G. M. et al. Synthesis and reactivity of discrete europium(ii) hydride complexes. Chem. Eur. J. 30, e202400681 (2024).

    CAS  PubMed  Google Scholar 

  29. Richardson, G. M. et al. Hydroarylation of olefins catalysed by a dimeric ytterbium(ii) alkyl. Nat. Commun. 12, 3147 (2021).

  30. Xue, M. et al. Catalytic addition of amines to carbodiimides by bis(β-diketiminate)lanthanide(ii) complexes and mechanistic studies. Dalton Trans. 44, 20075–20086 (2015).

    CAS  PubMed  Google Scholar 

  31. Mironova, O. A., Sukhikh, T. S., Konchenko, S. N. & Pushkarevsky, N. A. Study of the possibility of using salt metathesis reactions for the synthesis of the neodymium and samarium β-diketiminate chalcogenide complexes. Unexpected reduction of Sm(iii) to Sm(ii). Russ. J. Coord. Chem. 46, 241–250 (2020).

    CAS  Google Scholar 

  32. Schmid, M., Guillaume, S. M. & Roesky, P. W. β-Diketiminate rare earth borohydride complexes: synthesis, structure, and catalytic activity in the ring-opening polymerization of ε-caprolactone and trimethylene carbonate. Organometallics 33, 5392–5401 (2014).

    CAS  Google Scholar 

  33. Liu, X., Wen, Q., Xiang, L., Leng, X. & Chen, Y. Samarium(ii) monoalkyl complex supported by a β-diketiminato-based tetradentate ligand: synthesis, structure, and catalytic hydrosilylation of internal alkynes. Chem. Eur. J. 26, 5494–5499 (2020).

    CAS  PubMed  Google Scholar 

  34. Zhang, X. W. et al. Stable heteroleptic complexes of divalent lanthanides with bulky pyrazolylborate ligands—iodides, hydrocarbyls and triethylborohydrides. Dalton Trans. 40, 195–210 (2011).

    CAS  PubMed  Google Scholar 

  35. Hou, Z., Zhang, Y., Nishiura, M. & Wakatsuki, Y. (Pentamethylcyclopentadienyl)lanthanide(ii) alkyl and silyl complexes: synthesis, structures, and catalysis in polymerization of ethylene and styrene. Organometallics 22, 129–135 (2003).

    CAS  Google Scholar 

  36. Thompson, M. E. et al. “σ Bond metathesis” for carbon–hydrogen bonds of hydrocarbons and Sc–R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the π system in electrophilic activation of aromatic and vinylic C–H bonds. J. Am. Chem. Soc. 109, 203–219 (1987).

    CAS  Google Scholar 

  37. Arnold, P. L., McMullon, M. W., Rieb, J. & Kühn, F. E. C–H bond activation by f-block complexes. Angew. Chem. Int. Ed. 54, 82–100 (2015).

    CAS  Google Scholar 

  38. Evans, W. J., Perotti, J. M. & Ziller, J. W. Synthetic utility of [(C5Me5)2Ln][(μ-Ph)2BPh2] in accessing [(C5Me5)2LnR]x unsolvated alkyl lanthanide metallocenes, complexes with high C–H activation reactivity. J. Am. Chem. Soc. 127, 3894–3909 (2005).

  39. Bochkarev, M. N. Synthesis, arrangement, and reactivity of arene–lanthanide compounds. Chem. Rev. 102, 2089–2118 (2002).

    CAS  PubMed  Google Scholar 

  40. Tian, X. et al. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem. Soc. Rev. 53, 263–316 (2024).

    CAS  PubMed  Google Scholar 

  41. Meihaus, K. R., Fieser, M. E., Corbey, J. F., Evans, W. J. & Long, J. R. Record high single-ion magnetic moments through 4fn5d1 electron configurations in the divalent lanthanide complexes [(C5H4SiMe3)3Ln]. J. Am. Chem. Soc. 137, 9855–9860 (2015).

    CAS  PubMed  Google Scholar 

  42. Evans, W. J. & Ulibarri, T. A. Reactivity of (C5Me5)2Sm with cyclopentadiene and cyclopentadienide: isolation of the mixed-valence complex (C5Me5)2Sm(III)(μ-C5H5)Sm(II)(C5Me5)2. J. Am. Chem. Soc. 109, 4292–4297 (1987).

    CAS  Google Scholar 

  43. Evans, W. J., Drummond, D. K., Bott, S. G. & Atwood, J. L. Reductive distortion of azobenzene by an organosamarium(ii) reagent to form [(C5Me5)2Sm]2(C6H5)2N2: an X-ray crystallographic snapshot of an agostic hydrogen complex on an ortho-metalation reaction coordinate. Organometallics 5, 2389–2391 (1986).

    CAS  Google Scholar 

  44. Evans, W. J., Grate, J. W. & Doedens, R. J. Organolanthanide and organoyttrium hydride chemistry. 7. Reaction of the samarium–hydrogen bond in the organosamarium hydride [(C5Me5)2SmH]2 with carbon monoxide: formation, isomerization, and X-ray crystallographic characterization of the samarium complexes cis- and trans-{(C5Me5)2[(C6H5)3PO]Sm}2(μ-OCH:CHO). J. Am. Chem. Soc. 107, 1671–1679 (1985).

    CAS  Google Scholar 

  45. Evans, W. J., Grate, J. W., Bloom, I., Hunter, W. E. & Atwood, J. L. Synthesis and X-ray crystallographic characterization of an oxo-bridged bimetallic organosamarium complex, [(C5Me5)2Sm]2(μ-O). J. Am. Chem. Soc. 107, 405–409 (1985).

    CAS  Google Scholar 

  46. Lang, L., Ravera, E., Parigi, G., Luchinat, C. & Neese, F. Theoretical analysis of the long-distance limit of NMR chemical shieldings. J. Chem. Phys. 156, 154115 (2022).

    CAS  PubMed  Google Scholar 

  47. Bertini, I., Luchinat, C. & Parigi, G. Magnetic susceptibility in paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 40, 249–273 (2002).

    CAS  Google Scholar 

  48. Wedal, J. C. & Evans, W. J. A rare-earth metal retrospective to stimulate all fields. J. Am. Chem. Soc. 143, 18354–18367 (2021).

    CAS  PubMed  Google Scholar 

  49. Evans, W. J. Perspectives in reductive lanthanide chemistry. Coord. Chem. Rev. 206207, 263–283 (2000).

    Google Scholar 

  50. Evans, W. J. The importance of questioning scientific assumptions: some lessons from f element chemistry. Inorg. Chem. 46, 3435–3449 (2007).

    CAS  PubMed  Google Scholar 

  51. Brownstein, S., Dunogues, J., Lindsay, D. & Ingold, K. U. Conformation and rotational barriers in sym-tetra-tert-butylethane and sym-tetra(trimethylsilyl)ethane. J. Am. Chem. Soc. 99, 2073–2078 (1977).

    CAS  Google Scholar 

  52. Laskowski, C. A. et al. Synthesis and reactivity of two-coordinate Ni(i) alkyl and aryl complexes. J. Am. Chem. Soc. 135, 18272–18275 (2013).

    CAS  PubMed  Google Scholar 

  53. Attar, F. et al. Advanced electron paramagnetic resonance in chemical energy conversion: current status and future potential. Energy Environ. Sci. 17, 3307–3328 (2024).

    CAS  Google Scholar 

  54. Goodwin, C. A. P., Reta, D., Ortu, F., Chilton, N. F. & Mills, D. P. Synthesis and electronic structures of heavy lanthanide metallocenium cations. J. Am. Chem. Soc. 139, 18714–18724 (2017).

    CAS  PubMed  Google Scholar 

  55. Ortu, F. et al. Analysis of lanthanide-radical magnetic interactions in Ce(iii) 2,2′-bipyridyl complexes. Inorg. Chem. 56, 2496–2505 (2017).

    CAS  PubMed  Google Scholar 

  56. Goodwin, C. A. P. et al. Physicochemical properties of near-linear lanthanide(ii) bis(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 55, 10057–10067 (2016).

    CAS  PubMed  Google Scholar 

  57. Goodwin, C. A. P. et al. Investigation into the effects of a trigonal-planar ligand field on the electronic properties of lanthanide(ii) tris(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 56, 5959–5970 (2017).

    CAS  PubMed  Google Scholar 

  58. Bünzli, J.-C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39, 53–61 (2006).

    PubMed  Google Scholar 

  59. Ogawa, A. et al. Photoinduced reduction of group 16 heteroatom compounds with the aid of samarium diiodide. Tetrahedron Lett. 39, 6341–6342 (1998).

    CAS  Google Scholar 

  60. Sumino, Y., Harato, N., Tomisaka, Y. & Ogawa, A. A novel photoinduced reduction system of low-valent samarium species: reduction of organic halides and chalcogenides, and its application to carbonylation with carbon monoxide. Tetrahedron 59, 10499–10508 (2003).

    CAS  Google Scholar 

  61. Zinnen, H. A., Pluth, J. J. & Evans, W. J. X-ray crystallographic determination of the structure of bis(methyl-cyclopentadienyl)ytterbium tetrahydrofuranate and its ready formation by four new routes. J. Chem. Soc. J. Chem. Soc. 1980, 810–812 (1980).

    Google Scholar 

  62. Fieser, M. E., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. Dinitrogen reduction via photochemical activation of heteroleptic tris(cyclopentadienyl) rare-earth complexes. J. Am. Chem. Soc. 135, 3804–3807 (2013).

    CAS  PubMed  Google Scholar 

  63. Fieser, M. E. et al. Dinitrogen reduction, sulfur reduction, and isoprene polymerization via photochemical activation of trivalent bis(cyclopentadienyl) rare-earth-metal allyl complexes. Organometallics 34, 4387–4393 (2015).

    CAS  Google Scholar 

  64. Werkema, E. L. et al. Hydrogen for X-group exchange in CH3X (X = Cl, Br, I, OMe, and NMe2) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental andcomputational support for a carbenoid mechanism.Organometallics 28, 3173–3185 (2009).

    CAS  Google Scholar 

  65. Werkema, E. L., Andersen, R. A., Yahia, A., Maron, L. & Eisenstein, O. Hydrogen for X-group exchange in CH3X (X = Cl, Br, I, OMe, and NMe2) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational support for a carbenoid mechanism. Organometallics 28, 3173–3185 (2009).

    CAS  Google Scholar 

  66. Werkema, E. L., Yahia, A., Maron, L., Eisenstein, O. & Andersen, R. A. Bridging silyl groups in σ-bond metathesis and [1,2]-shifts. Experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3. Organometallics 29, 5103–5110 (2010).

    CAS  Google Scholar 

  67. Guihaumé, J. et al. Facile interconversion of [Cp2(Cl)Hf(SnH3)] and [Cp2(Cl)Hf(μ-H)SnH2]: DFT investigations of hafnocene stannyl complexes as masked stannylenes. Angew. Chem. Int. Ed. 49, 1816–1819 (2010).

    Google Scholar 

  68. Maron, L. & Eisenstein, O. Do f electrons play a role in the lanthanide-ligand bonds? A DFT study of Ln(NR2)3; R = H, SiH3. J. Phys. Chem. A 104, 7140–7143 (2000).

    CAS  Google Scholar 

  69. Scientific Colour Maps v.8.0.1 (Fabio Crameri, 2020); http://www.fabiocrameri.ch/colourmaps

  70. Lewe, N. et al. Comparison of chemical profiles of Kānuka (Kunzea robusta de Lange & Toelken, Myrtaceae) essential oils. Phytochem. Lett. 56, 50–56 (2023).

    CAS  Google Scholar 

  71. Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).

    CAS  Google Scholar 

  72. Oleinik, I. I., Oleinik, I. V., Abdrakhmanov, I. B., Ivanchev, S. S. & Tolstikov, G. A. Design of arylimine postmetallocene catalytic systems for olefin polymerization: I. Synthesis of substituted 2-cycloalkyl- and 2,6-dicycloalkylanilines. Russ. J. Gen. Chem. 74, 1423–1427 (2004).

    CAS  Google Scholar 

  73. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  74. Dolg, M., Stoll, H., Savin, A. & Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 75, 173–194 (1989).

    CAS  Google Scholar 

  75. Dolg, M., Stoll, H. & Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 85, 441–450 (1993).

    CAS  Google Scholar 

  76. Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).

    CAS  Google Scholar 

  77. Höllwarth, A. et al. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al–Bi and f-type polarization functions for Zn, Cd, Hg. Chem. Phys. Lett. 208, 237–240 (1993).

    Google Scholar 

  78. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    CAS  Google Scholar 

  79. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    CAS  Google Scholar 

  80. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    CAS  Google Scholar 

Download references

Acknowledgements

M.D.A. acknowledges government funding from the Royal Society Te Apārangi for support through a Marsden Fast-Start Grant (21-VUW-120) and Rutherford Discovery Fellowship (22-VUW-016). We are grateful for a Curtis-Gordon Research Scholarship and Victoria University of Wellington Doctoral Scholarship (to G.M.R. and F.M.B.). We also thank the MacDiarmid Institute (B.D.N.) for providing financial support. N.F.C. thanks the National Computational Infrastructure for computational resources via the Australian National University Merit Allocation Scheme.

Author information

Authors and Affiliations

Authors

Contributions

G.M.R. carried out the organometallic synthetic and reaction studies. T.R., N.F.C. and L.M. conducted the computational analysis. F.M.B., B.D.N. and J.E.H. developed the organic synthesis. R.A.K. conducted all of the GC–MS analyses. T.B., S.G. and L.L. conducted all of the superconducting quantum interference device measurements and interpreted the data. S.A.C. conducted the crystallographic studies and initiated the organic synthesis. J.L., L.F.L., J.H., M.D.A., N.F.C. and N.C. carried out the EPR studies. G.M.R. and N.J.L.K.D. conducted all of the photochemical studies. N.F.C., N.C., L.M. and M.D.A. wrote the manuscript. L.M. and M.D.A. managed the project.

Corresponding authors

Correspondence to Laurent Maron or Mathew D. Anker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks S. Chantal Stieber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Paramagnetic NMR shifts for 3, 4 and 7

Supplementary information

Supplementary Information

Synthetic, solution, solid-state and computational analyses and Supplementary Figs. 1–75and Tables 1–11.

Supplementary Dataset 1

Optimized coordinates for the calculated structures.

Supplementary Dataset 2

Crystallographic data for [(BDIDicyp)K] (CCDC 2244290).

Supplementary Dataset 3

Crystallographic data for compound 1 (CCDC 2244289).

Supplementary Dataset 4

Crystallographic data for compound 2 (CCDC 2244280).

Supplementary Dataset 5

Crystallographic data for compound 3 (CCDC 2244279).

Supplementary Dataset 6

Crystallographic data for compound 4 (CCDC 2244281).

Supplementary Dataset 7

Crystallographic data for compound 5 (CCDC 2244283).

Supplementary Dataset 8

Crystallographic data for compound 6 (CCDC 2244282).

Supplementary Dataset 9

Crystallographic data for compound 7 (CCDC 2244284).

Supplementary Dataset 10

Crystallographic data for compound (BDIDicyp)2Sm (CCDC 2359622).

Source data

Source Data Fig. 4

Time dependence of the EPR intensity of the organic radical signal at 170 K.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, G.M., Rajeshkumar, T., Burke, F.M. et al. Four-electron reduction of benzene by a samarium(ii)-alkyl without the addition of external reducing agents. Nat. Chem. 17, 20–28 (2025). https://doi.org/10.1038/s41557-024-01688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01688-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing