Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering a DNA polymerase for modifying large RNA at specific positions

An Author Correction to this article was published on 16 February 2025

This article has been updated

Abstract

The synthesis of large RNA with precise modifications at specific positions is in high demand for both basic research and therapeutic applications, but efficient methods are limited. Engineered DNA polymerases have recently emerged as attractive tools for RNA labelling, offering distinct advantages over conventional RNA polymerases. Here, through semi-rational designs, we engineered a DNA polymerase variant and used it to precisely incorporate a diverse range of modifications, including base modifications, 2′-ribose modifications and backbone modifications, into desired positions within RNA. We achieved efficiencies exceeding 85% in the majority of modification cases, demonstrating success in introducing 2′-O-methyl, phosphorothioate, N4-acetylcytidine and a fluorophore to specific sites in eGFP and Firefly luciferase messenger RNA. Our mRNA products with N4-acetylcytidine, 2′-O-methyl and/or phosphorothioate have demonstrated the ability to enhance stability and affect protein production. This method presents a promising tool for the comprehensive functionalization of RNA, enabling the introduction of plentiful modifications irrespective of RNA lengths and sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of PORDVA for position-specific labelling of RNA.
Fig. 2: Semi-rational engineering of DNAP for PORDVA.
Fig. 3: Application of PORDVA-generated RNA for smFRET.
Fig. 4: Application of PORDVA in incorporating multiple modifications into crRNA.
Fig. 5: PORDVA fluorescent labelling of lncRNA.
Fig. 6: PORDVA position-specific labelling of 867 nt and 1,800 nt mRNA.

Similar content being viewed by others

Data availability

The data generated and analysed during this study are included in this published article, the Supplementary Information and Source data. Source data are provided with this paper.

Change history

References

  1. Huang, K. & Fang, X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int. J. Biol. Macromol. 239, 124244 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Klöcker, N., Weissenboeck, F. P. & Rentmeister, A. Covalent labeling of nucleic acids. Chem. Soc. Rev. 49, 8749–8773 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cornelissen, N. V. & Rentmeister, A. Ribozyme for stabilized SAM analogue modifies RNA in cells. Nat. Chem. 15, 1486–1487 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Fang, L. L., Xiao, L., Jun, Y. W., Onishi, Y. & Kool, E. Reversibe 2′-OH acylation enhances RNA stability. Nat. Chem. 15, 1296–1305 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Klöcker, N. et al. Photocaged 5′ cap analogues for optical control of mRNA translation in cells. Nat. Chem. 14, 905–913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scheitl, C., Okuda, T., Adelmann, J. & Höbartner, C. Ribozyme-catalyzed late-stage functionalization and fluorogenic labeling of RNA. Angew. Chem. Int. Ed. Engl. 62, e202305463 (2023).

    Article  PubMed  Google Scholar 

  7. Scheitl, C., Ghaem Maghami, M., Lenz, A. & Höbartner, C. Site-specific RNA methylation by a methyltransferase ribozyme. Nature 587, 663–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghaem Maghami, M., Scheitl, C. & Höbartner, C. Direct in vitro selection of trans-acting ribozymes for posttranscriptional, site-specific, and covalent fluorescent labeling of RNA. J. Am. Chem. Soc. 141, 19546–19549 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Xiao, L., Jun, Y. & Kool, E. DNA tiling enables precise acylation-based labeling and control of mRNA. Angew. Chem. Int. Ed. Engl. 60, 26798–26805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao, L., Habibian, M. & Kool, E. Site-selective RNA functionalization via DNA-induced structure. J. Am. Chem. Soc. 142, 16357–16363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, D. et al. Site-specific and enzymatic cross-linking of sgRNA enables wavelength-selectable photoactivated control of CRISPR gene editing. J. Am. Chem. Soc. 144, 4487–4495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flamme, M., McKenzie, L., Sarac, I. & Hollenstein, M. Chemical methods for the modification of RNA. Methods 161, 64–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522, 368–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Y. et al. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat. Protoc. 13, 987–1005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, S., Chen, D., Gao, L. & Liu, Y. Short oligonucleotides facilitate co-transcriptional labeling of RNA at specific positions. J. Am. Chem. Soc. 144, 5494–5502 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Seo, Y., Matsuda, S. & Romesberg, F. Transcription of an expanded genetic alphabet. J. Am. Chem. Soc. 131, 5046–5047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, T. et al. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2′-modified DNA. Nat. Chem. 8, 556–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cozens, C., Pinheiro, V., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8067–8072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marimuthu, C., Tang, T. H., Tominaga, J., Tan, S. C. & Gopinath, S. C. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137, 1307–1315 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Le Dortz, L. et al. Optimized lambda exonuclease digestion or purification using streptavidin-coated beads: which one is best for successful DNA aptamer selection? Methods Protoc. 5, 89 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yao, C., Zhang, R., Tang, J. & Yang, D. Rolling circle amplification (RCA)-based DNA hydrogel. Nat. Protoc. 16, 5460–5483 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Jia, Y. L., Chen, L. M., Liu, J., Li, W. & Gu, H. Z. DNA-catalyzed efficient production of single-stranded DNA nanostructures. Chem 7, 959–981 (2021).

    Article  CAS  Google Scholar 

  23. Shao, Q. et al. Selection of aptamers with large hydrophobic 2′-substituents. J. Am. Chem. Soc. 142, 2125–2128 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, T. & Romesberg, F. Enzymatic synthesis, amplification, and application of DNA with a functionalized backbone. Angew. Chem. Int. Ed. Engl. 56, 14046–14051 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, T. & Romesberg, F. Polymerase chain transcription: exponential synthesis of RNA and modified RNA. J. Am. Chem. Soc. 139, 9949–9954 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Arezi, B. et al. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance. Front. Microbiol. 5, 408 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Moody, E. R., Obexer, R., Nickl, F., Spiess, R. & Lovelock, S. L. An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science 380, 1150–1154 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Summerer, D., Rudinger, N. Z., Detmer, I. & Marx, A. Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design. Angew. Chem. Int. Ed. Engl. 44, 4712–4715 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kuwahara, M. et al. Systematic characterization of 2′-deoxynucleoside-5′-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Res. 34, 5383–5394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baker, J. L. et al. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335, 233–235 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, A. M., Rajashankar, K. R. & Patel, D. J. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486, 85–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yadav, R., Widom, J. R., Chauvier, A. & Walter, N. G. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat. Commun. 13, 207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freund, N. et al. A two-residue nascent-strand steric gate controls synthesis of 2′-O-methyl- and 2′-O-(2-methoxyethyl)-RNA. Nat. Chem. 15, 91–100 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Trausch, J. J. & Batey, R. T. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem. Biol. 21, 205–216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ames, T. D., Rodionov, D. A., Weinberg, Z. & Breaker, R. R. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem. Biol. 17, 681–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, H. et al. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat. Biomed. Eng. 7, 1583–1601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 20, 641–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Sanz Juste, S. et al. Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nat. Commun. 14, 6388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ageely, E. A. et al. Gene editing with CRISPR–Cas12a guides possessing ribose-modified pseudoknot handles. Nat. Commun. 12, 6591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, B. et al. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 1, 0066 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perica, T. et al. Systems-level effects of allosteric perturbations to a model molecular switch. Nature 599, 152–157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Eom, S. et al. Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development. Nat. Cell Biol. 25, 1369–1383 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Seok, H. et al. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 584, 279–285 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Nemeth, K., Bayraktar, R., Ferracin, M. & Calin, G. A. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Gen. 25, 211–232 (2024).

    Article  CAS  Google Scholar 

  48. Brown, J. D. et al. Structural basis for transcriptional start site control of HIV-1 RNA fate. Science 368, 413–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ye, L. Q. et al. Short- and long-range interactions in the HIV's 5' UTR regulate genome dimerization and packaging. Nat. Struct. Mol. Biol. 29, 306–319 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phan, H. D., Lai, L. B., Zahurancik, W. J. & Gopalan, V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem. Sci 46, 976–991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug. Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arango, D. et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol. Cell 82, 2797–2814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elliott, B. A. et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat. Commun. 10, 3401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Choi, J. H. et al. 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haslecker, R. et al. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat. Commun. 14, 8422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brunderová, M. et al. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat. Commun. 15, 3054 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hoshino, H., Kasahara, Y., Kuwahara, M. & Obika, S. DNA polymerase variants with high processivity and accuracy for encoding and decoding locked nucleic acid sequences. J. Am. Chem. Soc. 142, 21530–21537 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Student Innovation Center at Shanghai Jiao Tong University for assistance in FRET data collection. This work was supported by the National Key Research and Development Program of China (grant 2021YFA0910300) and the National Natural Science Foundation of China (grant 32471342).

Author information

Authors and Affiliations

Authors

Contributions

D.C. and Y.L. conceived and designed experiments. D.C. performed the polymerase design, engineering, sample preparation and characterization. Z.H. and X.L. assisted with protein purification. D.C. and Y.L. wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Yu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Marcel Hollenstein, Masayasu Kuwahara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Applications of hybrid solid-liquid phase PORDVA in synthesizing RNA with 5′-proximal and internal modifications.

(a) Synthesis schemes for P10 and P11 with Cy3 and 2′-OMe, respectively, at the 5′-end using the hybrid-phase PORDVA. (b) Secondary structures of P10-P13 synthesized via the hybrid-phase PORDVA. (c) Synthesis schemes for P12 and P13 labeled with internal m6A and m7G, respectively, using the hybrid-phase PORDVA. (d) Denaturing PAGE images of P10-P13 (Lanes 1 to 4) under UV and fluorescence excitation. The 45 nt unmodified RNA was loaded to Lane 5 as a control. (e) MS spectra of P10, P11, P12, and P13. (f) Native agarose gel image of DNA cleavage by Cas12a in the presence of unmodified RNA (Lane 2), P10 (Lane 3), P11 (Lane 4), P12 (Lane 5) and P13 (Lane 6). The target DNA was loaded to Lane 1 as a control. The DNA and RNA sequences used in the hybrid-phase PORDVA synthesis are listed in Supplementary Table 21.

Source data

Extended Data Fig. 2 Application of hybrid solid-liquid phase PORDVA in synthesizing RNA with multiple modifications at discrete positions.

(a) Synthesis scheme for P14 with an internal m7G (at residue 26) and Cy3 (at residue 39) using the hybrid-phase PORDVA. (b) Images of denaturing PAGE of 10 µL reaction mixture collected from steps 1 to 4 after treatment with DNase I and proteinase K at 37 °C for 30 min. 25 nt LRNA and 45 nt unmodified RNA were loaded into Lanes 1 and 6, respectively, as controls. (c) LC-MS of P14. The DNA and RNA sequences used in the hybrid-phase PORDVA synthesis are listed in Supplementary Table 21.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–27, Methods, Figs. 1–20 and HPLC chromatogram mass spectra.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figures.

Source data

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 3

Unprocessed gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed gels.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed gels.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Unprocessed gels.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed gels.

Source Data Extended Data Fig. 2

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Han, Z., Liang, X. et al. Engineering a DNA polymerase for modifying large RNA at specific positions. Nat. Chem. 17, 382–392 (2025). https://doi.org/10.1038/s41557-024-01707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01707-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing