Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular dyads as photogenerated qubit candidates

Abstract

Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore–radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet–radical pairs that can result in the formation of quartet states by spin mixing. For a triplet–radical pair to undergo spin mixing, the molecular bridge joining the spin centres must permit effective spin communication, which has previously been ensured using covalent, π-conjugated linkers. Here we used perylenediimides and nitroxide radicals designed to self-assemble in solution via hydrogen bonding and observed, using electron paramagnetic resonance spectroscopy, the formation of quartet states that can be manipulated coherently using microwaves. This unprecedented finding that non-covalent bonds can enable spin mixing advances supramolecular chemistry as a valuable tool for exploring, developing and scaling up materials for quantum information science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of the linker on the formation of quartet states in photogenerated triplet–radical systems.
Fig. 2: Self-assembly properties of the PDI···TZ systems.
Fig. 3: Transient pulse EPR spectra.
Fig. 4: Transient pulse nutation data and the corresponding Fourier transform.
Fig. 5: Transient Rabi oscillations for PDI–H···TZ–eTEMPO.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and Supplementary Information. Source data are provided with this paper.

References

  1. Lehn, J. M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988).

    Google Scholar 

  2. Chen, H. & Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mat. 6, 804–828 (2021).

    CAS  Google Scholar 

  3. Bayer, O. Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angew. Chem. 59, 257–272 (1947).

    Google Scholar 

  4. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    CAS  PubMed  Google Scholar 

  5. Wessendorf, F., Grimm, B., Guldi, D. M. & Hirsch, A. Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J. Am. Chem. Soc. 132, 10786–10795 (2010).

    CAS  PubMed  Google Scholar 

  6. Gust, D. Supramolecular photochemistry applied to artificial photosynthesis and molecular logic devices. Faraday Discuss. 185, 9–35 (2015).

    CAS  PubMed  Google Scholar 

  7. Würthner, F. et al. Supramolecular p–n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. J. Am. Chem. Soc. 126, 10611–10618 (2004).

    PubMed  Google Scholar 

  8. Yamauchi, A. et al. Room-temperature quantum coherence of entangled multiexcitons in a metal–organic framework. Sci. Adv. 10, eadi3147 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamabayashi, T. et al. Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 12090–12101 (2018).

    CAS  PubMed  Google Scholar 

  10. Fernandez, A. et al. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorgon, S. et al. Reversible spin-optical interface in luminescent organic radicals. Nature 620, 538–544 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu, Y. et al. Optical spin polarization of a narrow linewidth electron spin qubit in a chromophore/stable-radical system. Angew. Chem. Int. Ed. 62, e202214668 (2023).

    CAS  Google Scholar 

  13. Qiu, Y., Eckvahl, H. J., Equbal, A., Krzyaniak, M. D. & Wasielewski, M. R. Enhancing coherence times of chromophore–radical molecular qubits and qudits by rational design. J. Am. Chem. Soc. 145, 25903–25909 (2023).

    CAS  PubMed  Google Scholar 

  14. Mayländer, M., Chen, S., Lorenzo, E. R., Wasielewski, M. R. & Richert, S. Exploring photogenerated molecular quartet states as spin qubits and qudits. J. Am. Chem. Soc. 143, 7050–7058 (2021).

    PubMed  Google Scholar 

  15. Mayländer, M., Thielert, P., Quintes, T., Vargas Jentzsch, A. & Richert, S. Room temperature electron spin coherence in photogenerated molecular spin qubit candidates. J. Am. Chem. Soc. 145, 14064–14069 (2023).

    PubMed  Google Scholar 

  16. Mayländer, M. et al. Distance dependence of enhanced intersystem crossing in BODIPY−nitroxide dyads. Chem. Sci. 14, 5361–5368 (2023).

    PubMed  PubMed Central  Google Scholar 

  17. Mayländer, M. et al. PDI–trityl dyads as photogenerated molecular spin qubit candidates. Chem. Sci. 14, 10727–10735 (2023).

    PubMed  PubMed Central  Google Scholar 

  18. Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

    CAS  PubMed  Google Scholar 

  19. Moreno-Pineda, E., Martins, D. & Tuna, F. Molecules as qubits, qudits and quantum gates. Electron Paramag. Reson. 27, 146–187 (2021).

    CAS  Google Scholar 

  20. Franz, M., Neese, F. & Richert, S. Calculation of exchange couplings in the electronically excited state of molecular three-spin systems. Chem. Sci. 13, 12358–12366 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. David, G. & Le Guennic, B. Computation of magnetic exchange couplings in photoexcited systems based on KS-DFT. J. Phys. Chem. Lett. 15, 10026–10031 (2024).

    CAS  PubMed  Google Scholar 

  22. Franz, M., Neese, F. & Richert, S. Elucidation of the exchange interaction in photoexcited three-spin systems—a second-order perturbational approach. Phys. Chem. Chem. Phys. 26, 25005–25020 (2024).

    CAS  PubMed  Google Scholar 

  23. Quintes, T., Mayländer, M. & Richert, S. Properties and applications of photoexcited chromophore–radical systems. Nat. Rev. Chem. 7, 75–90 (2023).

    PubMed  Google Scholar 

  24. Fouquey, C., Lehn, J. M. & Levelut, A. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    CAS  Google Scholar 

  25. Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. Tube-like nanostructures composed of networks of complementary hydrogen bonds. J. Am. Chem. Soc. 117, 6360–6361 (1995).

    CAS  Google Scholar 

  26. Lange, R. F. M. et al. Crystal engineering of melamine–imide complexes; tuning the stoichiometry by steric hindrance of the imide carbonyl groups. Angew. Chem. Int. Ed. 36, 969–971 (1997).

    CAS  Google Scholar 

  27. Jolliffe, K. A., Timmerman, P. & Reinhoudt, D. N. Noncovalent assembly of a fifteen-component hydrogen-bonded nanostructure. Angew. Chem. Int. Ed. 38, 933–937 (1999).

    CAS  Google Scholar 

  28. Würthner, F. et al. Hierarchical self-organization of perylene bisimide–melamine assemblies to fluorescent mesoscopic superstructures. Chem. Eur. J. 6, 3871–3886 (2000).

    PubMed  Google Scholar 

  29. Würthner, F., Thalacker, C. & Sautter, A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π–π interactions. Adv. Mater. 11, 754–758 (1999).

    Google Scholar 

  30. Schenning, A. P. H. J. et al. Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)–perylene bisimide chiral assemblies. J. Am. Chem. Soc. 124, 10252–10253 (2002).

    CAS  PubMed  Google Scholar 

  31. Kálai, T., Jekő, J., Berente, Z. & Hideg, K. Palladium-catalyzed cross-coupling reactions of paramagnetic vinyl bromides and paramagnetic boronic acids. Synthesis 38, 439–446 (2006).

    Google Scholar 

  32. Mayländer, M. et al. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem. Sci. 13, 6732–6743 (2022).

    PubMed  PubMed Central  Google Scholar 

  33. Online tools for supramolecular chemistry research and analysis. http://supramolecular.org (2015).

  34. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    CAS  PubMed  Google Scholar 

  35. Astashkin, A. V. & Schweiger, A. Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174, 595–602 (1990).

    CAS  Google Scholar 

  36. Mizuochi, N., Ohba, Y. & Yamauchi, S. A two-dimensional EPR nutation study on excited multiplet states of fullerene linked to a nitroxide radical. J. Phys. Chem. A 101, 5966–5968 (1997).

    CAS  Google Scholar 

  37. Mizuochi, N., Ohba, Y. & Yamauchi, S. First observation of the photoexcited quintet state in fullerene linked with two nitroxide radicals. J. Phys. Chem. A 103, 7749–7752 (1999).

    CAS  Google Scholar 

  38. Lockyer, S. J. et al. Targeting molecular quantum memory with embedded error correction. Chem. Sci. 12, 9104–9113 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

    CAS  PubMed  Google Scholar 

  40. Yu, C.-J., von Kugelgen, S., Laorenza, D. W. & Freedman, D. E. A molecular approach to quantum sensing. ACS Cent. Sci. 7, 712–723 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Interdisciplinary Thematic Institute SysChem via IdEx Unistra (ANR-10-IDEX-0002) within the programme Investissement d’Avenir (A.V.J.), the Agence Nationale de la Recherche (ANR; French National Research Agency, project no. ANR-24-CE92-0009-01, to A.V.J.), the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation, project nos. 417643975 and 545606231, S.R.) and the Fonds der Chemischen Industrie (FCI; S.R.). We thank the SIBW/DFG for financing the EPR instrumentation that is operated within the MagRes Center of the University of Freiburg (grant no. INST 39/928-1 FUGG) and acknowledge support by the Cluster de cAlcul Intensif à l’Université de Strasbourg (CAIUS) by providing access to computing resources. A.V.J. acknowledges support by the CNRS via the Emergence@INC programme.

Author information

Authors and Affiliations

Authors

Contributions

I.V.K. synthesized the compounds and characterized the self-assembly by UV–visible and NMR spectroscopy; P.T. performed the EPR measurements and analysed the EPR data with help from E.Z.; E.Z. performed the variable-temperature UV–visible measurements; M.M. performed the initial EPR experiments; T.Q. and E.Z. simulated the EPR data; S.R. supervised the EPR studies; A.V.J. supervised the synthesis and characterization of the compounds and carried out DFT calculations; S.R. and A.V.J. conceived the study and wrote the paper with the help of all of the co-authors.

Corresponding authors

Correspondence to Sabine Richert or Andreas Vargas Jentzsch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Malcolm Forbes, Natia Frank and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, extended discussion of the experimental procedures, Figs. 1–33 and Tables 1–5.

Supplementary Data 1

xyz coordinates for the optimized DFT structures.

Source data

Source Data Fig. 2

ASCII data for Fig. 2.

Source Data Fig. 3

ASCII data for Fig. 3.

Source Data Fig. 4

ASCII data for Fig. 4.

Source Data Fig. 5

ASCII data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khariushin, I.V., Thielert, P., Zöllner, E. et al. Supramolecular dyads as photogenerated qubit candidates. Nat. Chem. 17, 493–499 (2025). https://doi.org/10.1038/s41557-024-01716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01716-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing