Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-phase synthesis of Clar’s goblet and elucidation of its spin properties

Abstract

In the traditional view, spin pairing occurs between two electrons in a chemical bond where the bonding interaction compensates for the penalty of electrostatic repulsion. It is a mystery whether spin pairing can occur between two non-bonded electrons within a molecular entity. Unveiling this type of spin entanglement (that is, pairing between two spatially segregated spins) at the molecular scale is a long-standing challenge. Clar’s goblet, proposed by Erich Clar in 1972, provides an ideal platform to verify this unusual property. Here we report the solution-phase synthesis of Clar’s goblet and experimental elucidation of its spin properties. Magnetic studies reveal that the two spins are spatially segregated with an average distance of 8.7 Å and antiferromagnetically coupled in the ground state with an ΔES–T of −0.29 kcal mol−1. Our results provide insight into the spin entanglement in Clar’s goblet and may inspire the design of correlated molecular spins for quantum information technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the concept of spin entanglement in a graphene fragment, Clar’s goblet, along with the achieved molecular design and properties in this work.
Fig. 2: Molecular design and synthesis of cg-1 and cg-2.
Fig. 3: Single-crystal structure and super-structure of cg-2.
Fig. 4: Deciphering the spin ground state of cg-2 and the dipolar interaction between the two radicals.
Fig. 5: Redox behaviour of cg-2 and characterization of its different oxidation states, revealing the spin/charge spatial segregation property.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2376440 (5) and 2376442 (cg-2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Clar, E. & Mackay, C. C. Circobiphenyl and the attempted synthesis of 1:14, 3:4, 7:8, 10:11-tetrabenzoperopyrene. Tetrahedron 28, 6041–6047 (1972).

    CAS  Google Scholar 

  2. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    CAS  PubMed  Google Scholar 

  3. Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978).

    CAS  Google Scholar 

  4. Morita, Y., Suzuki, S., Sato, K. & Takui, T. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 3, 197–204 (2011).

    CAS  PubMed  Google Scholar 

  5. Zeng, W. & Wu, J. Open-shell graphene fragments. Chem 7, 358–386 (2021).

    CAS  Google Scholar 

  6. Kubo, T. Syntheses and properties of open-shell π-conjugated molecules. Bull. Chem. Soc. Jpn 94, 2235–2244 (2021).

    CAS  Google Scholar 

  7. Xiang, Q. & Sun, Z. Doublet open-shell graphene fragments. Chem. Asian J. 17, e202200251 (2022).

    CAS  PubMed  Google Scholar 

  8. Ahmed, J. & Mandal, S. K. Phenalenyl radical: smallest polycyclic odd alternant hydrocarbon present in the graphene sheet. Chem. Rev. 122, 11369–11431 (2022).

    CAS  PubMed  Google Scholar 

  9. Yokoi, H., Hiroto, S. & Shinokubo, H. Reversible σ-bond formation in bowl-shaped π-radical cations: the effects of curved and planar structures. J. Am. Chem. Soc. 140, 4649–4655 (2018).

    CAS  PubMed  Google Scholar 

  10. Jiao, T. et al. Synthesis of monolayer and persistent bilayer graphene fragments by using a radical-mediated coupling approach. Nat. Synth. 2, 1104–1115 (2023).

    CAS  Google Scholar 

  11. Pal, S. K. et al. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005).

    CAS  PubMed  Google Scholar 

  12. Kubo, T. et al. Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon. Angew. Chem. Int. Ed. 44, 6564–6568 (2005).

    CAS  Google Scholar 

  13. Pariyar, A. et al. Switching closed-shell to open-shell phenalenyl: toward designing electroactive materials. J. Am. Chem. Soc. 137, 5955–5960 (2015).

    CAS  PubMed  Google Scholar 

  14. Rudebusch, G. E. et al. Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals. Nat. Chem. 8, 753–759 (2016).

    CAS  PubMed  Google Scholar 

  15. Mukherjee, A., Sau, S. C. & Mandal, S. K. Exploring closed-shell cationic phenalenyl: from catalysis to spin electronics. Acc. Chem. Res. 50, 1679–1691 (2017).

    CAS  PubMed  Google Scholar 

  16. Kushida, T. et al. Boron-stabilized planar neutral π-radicals with well-balanced ambipolar charge-transport properties. J. Am. Chem. Soc. 139, 14336–14339 (2017).

    CAS  PubMed  Google Scholar 

  17. Ravat, P., Šolomek, T., Häussinger, D., Blacque, O. & Juríček, M. Dimethylcethrene: a chiroptical diradicaloid photoswitch. J. Am. Chem. Soc. 140, 10839–10847 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).

    CAS  PubMed  Google Scholar 

  19. Jousselin-Oba, T. et al. Excellent semiconductors based on tetracenotetracene and pentacenopentacene: from stable closed-shell to singlet open-shell. J. Am. Chem. Soc. 141, 9373–9381 (2019).

    CAS  PubMed  Google Scholar 

  20. Imran, M., Wehrmann, C. M. & Chen, M. S. Open-shell effects on optoelectronic properties: antiambipolar charge transport and anti-kasha doublet emission from a N-substituted bisphenalenyl. J. Am. Chem. Soc. 142, 38–43 (2019).

    PubMed  Google Scholar 

  21. Zong, C. et al. Isomeric dibenzoheptazethrenes for air‐stable organic field‐effect transistors. Angew. Chem. Int. Ed. 60, 16230–16236 (2021).

    CAS  Google Scholar 

  22. Prajapati, B. et al. Tetrafluorenofulvalene as a sterically frustrated open-shell alkene. Nat. Chem. 15, 1541–1548 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. et al. A triply negatively charged nanographene bilayer with spin frustration. Angew. Chem. Int. Ed. 62, e202217788 (2023).

    CAS  Google Scholar 

  24. Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009).

    PubMed  Google Scholar 

  25. Fajtlowicz, S., John, P. E. & Sachs, H. On maximum matchings and eigenvalues of benzenoid graphs. Croat. Chem. Acta 78, 195–201 (2005).

    CAS  Google Scholar 

  26. Borden, W. T. & Davidson, E. R. Effects of electron repulsion in conjugated hydrocarbon diradicals. J. Am. Chem. Soc. 99, 4587–4594 (1977).

    CAS  Google Scholar 

  27. Lineberger, W. C. & Borden, W. T. The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals. Phys. Chem. Chem. Phys. 13, 11792–11813 (2011).

    PubMed  Google Scholar 

  28. Inoue, J. et al. The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).

    CAS  PubMed  Google Scholar 

  29. Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    PubMed  Google Scholar 

  30. Arikawa, S., Shimizu, A., Shiomi, D., Sato, K. & Shintani, R. Synthesis and isolation of a kinetically stabilized crystalline triangulene. J. Am. Chem. Soc. 143, 19599–19605 (2021).

    CAS  PubMed  Google Scholar 

  31. Valenta, L. et al. Trimesityltriangulene: a persistent derivative of Clar’s hydrocarbon. Chem. Commun. 58, 3019–3022 (2022).

    CAS  Google Scholar 

  32. Dowd, P. Trimethylenemethane. Acc. Chem. Res. 5, 242–248 (1972).

    CAS  Google Scholar 

  33. Hund, F. Zur deutung verwickelter spektren, insbesondere der elemente scandium bis nickel. Z. Phys. 33, 345–371 (1925).

    CAS  Google Scholar 

  34. Dowd, P. Tetramethyleneethane. J. Am. Chem. Soc. 92, 1066–1068 (1970).

    CAS  Google Scholar 

  35. Kollmar, H. & Staemmler, V. Violation of Hund’s rule by spin polarization in molecules. Theor. Chim. Acta 48, 223–239 (1978).

    CAS  Google Scholar 

  36. Salem, L. The sudden polarization effect and its possible role in vision. Acc. Chem. Res. 12, 87–92 (1979).

    CAS  Google Scholar 

  37. Karafiloglou, P. The double (or dynamic) spin polarization in π diradicals. J. Chem. Educ. 66, 816–817 (1989).

    CAS  Google Scholar 

  38. Burkard, G. Spin-entangled electrons in solid-state systems. J. Phys. Condens. Matter 19, 233202 (2007).

    Google Scholar 

  39. Troiani, F. & Affronte, M. Molecular spins for quantum information technologies. Chem. Soc. Rev. 40, 3119–3129 (2011).

    CAS  PubMed  Google Scholar 

  40. Liu, J. & Feng, X. Synthetic Tailoring of graphene nanostructures with zigzag‐edged topologies: progress and perspectives. Angew. Chem. Int. Ed. 59, 23386–23401 (2020).

    CAS  Google Scholar 

  41. Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    CAS  PubMed  Google Scholar 

  42. Zhao, C. et al. Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation. Phys. Rev. Lett. 132, 046201 (2024).

    CAS  PubMed  Google Scholar 

  43. Zhao, C. et al. Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains. Nat. Nanotechnol. 19, 1789–1795 (2024).

    CAS  PubMed  Google Scholar 

  44. Pogodin, S. & Agranat, I. Clar goblet and related non-Kekulé benzenoid LPAHs. A theoretical study. J. Org. Chem. 68, 2720–2727 (2003).

    CAS  PubMed  Google Scholar 

  45. Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    CAS  PubMed  Google Scholar 

  46. Gil‐Guerrero, S., Melle‐Franco, M., Peña‐Gallego, Á. & Mandado, M. Clar goblet and aromaticity driven multiradical nanographenes. Chem. Eur. J. 26, 16138–16143 (2020).

    PubMed  Google Scholar 

  47. Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020).

    CAS  PubMed  Google Scholar 

  48. Wei, H. et al. A facile approach toward 1, 2-diazabenzo [ghi] perylene derivatives: structures and electronic properties. Chem. Commun. 53, 6740–6743 (2017).

    CAS  Google Scholar 

  49. Li, Y. et al. Bay-and ortho-octasubstituted perylenes. Org. Lett. 19, 5094–5097 (2017).

    CAS  PubMed  Google Scholar 

  50. Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    CAS  PubMed  Google Scholar 

  51. Eaton, S. S., More, K. M., Sawant, B. M. & Eaton, G. R. Use of the ESR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J. Am. Chem. Soc. 105, 6560–6567 (1983).

    CAS  Google Scholar 

  52. Moise, G. et al. The electronic spin state of diradicals obtained from the nuclear perspective: the strange case of Chichibabin radicals. ChemPhysChem https://doi.org/10.1002/cphc.202400707 (2025).

  53. Bleaney, B. & Bowers, K. D. Anomalous paramagnetism of copper acetate. Proc. R. Soc. Lond. Ser. A 214, 451–465 (1952).

    CAS  Google Scholar 

  54. Kubo, T. Recent progress in quinoidal singlet biradical molecules. Chem. Lett. 44, 111–122 (2014).

    Google Scholar 

  55. Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    CAS  PubMed  Google Scholar 

  56. Gopalakrishna, T. Y., Zeng, W., Lu, X. & Wu, J. From open-shell singlet diradicaloids to polyradicaloids. Chem. Commun. 54, 2186–2199 (2018).

    Google Scholar 

  57. Wu, J. Diradicaloids (Jenny Stanford Publishing, 2022).

  58. Hu, X. et al. Air stable high-spin blatter diradicals: non-Kekulé versus Kekulé structures. J. Mater. Chem. C 7, 6559–6563 (2019).

    CAS  Google Scholar 

  59. Borissov, A., Chmielewski, P. J., Gómez García, C. J., Lis, T. & Stępień, M. Dinor [7] helicene and beyond: divergent synthesis of chiral diradicaloids with variable open‐shell character. Angew. Chem. Int. Ed. 62, e202309238 (2023).

    CAS  Google Scholar 

  60. Wu, H. et al. Stable π-extended thio[7]helicene-based diradical with predominant through-space spin–spin coupling. J. Am. Chem. Soc. 146, 7480–7486 (2024).

    CAS  PubMed  Google Scholar 

  61. Konishi, A. et al. Synthesis and characterization of teranthene: a singlet biradical polycyclic aromatic hydrocarbon having Kekulé structures. J. Am. Chem. Soc. 132, 11021–11023 (2010).

    CAS  PubMed  Google Scholar 

  62. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    CAS  PubMed  Google Scholar 

  63. Gaita-Ariño, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).

    PubMed  Google Scholar 

  64. Lombardi, F. et al. Synthetic tuning of the quantum properties of open-shell radicaloids. Chem 7, 1363–1378 (2021).

    CAS  Google Scholar 

  65. Zhang, D. et al. An air-stable carbon-centered triradical with a well-addressable quartet ground State. J. Am. Chem. Soc. 146, 21752–21761 (2024).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.W. acknowledges the financial support from Singapore MOE Tier 2 projects (project nos. MOE‐T2EP10222‐0003 and MOE-T2EP10221-0005) and A*STAR MTC IRG grant (grant no. M22K2c0083). S.-D.J. thanks the Natural Science Foundation of China (grant nos. 22488101, 22325503 and 22250001), the Fundamental Research Funds for the Central Universities (grant no. 2024ZYGXZR004) and Guangdong Provincial Quantum Science Strategic Initiative (grant no. GDZX2301002).

Author information

Authors and Affiliations

Authors

Contributions

T.J. and J.W. conceived the project, designed the research and prepared the paper. T.J. carried out most of the experiments and analysed the data. J.W. supervised the project. C.-H.W. and Y.-S.Z. contributed to the pulse-EPR measurements. X.M. and S.W. contributed to the X-ray crystallographic analyses. S.-D.J. supervised the EPR and magnetic studies. All authors discussed and commented on the paper.

Corresponding authors

Correspondence to Shang-Da Jiang or Jishan Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32.

Supplementary Data 1

Crystallographic data for structure 5 (CCDC 2376440).

Supplementary Data 2

Crystallographic data for structure cg-2 (CCDC 2376442).

Supplementary Data 3

Cartesian coordinates for the calculated structures.

Source data

Source Data Fig. 4

Source data for Fig. 4. Pulse- and cw-EPR spectra and SQUID data.

Source Data Fig. 5

Source data for Fig. 5. CV and DPV traces, UV–vis–NIR absorption spectra, cw-EPR spectrum and NMR spectrum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, T., Wu, CH., Zhang, YS. et al. Solution-phase synthesis of Clar’s goblet and elucidation of its spin properties. Nat. Chem. 17, 924–932 (2025). https://doi.org/10.1038/s41557-025-01776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01776-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing