Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switchable skeletal editing of quinolines enabled by cyclizative sequential rearrangements

Abstract

The rapid diversification of core ring structures in complex molecules through switchable skeletal editing is valuable in the drug discovery process. However, controllable methods for chemically divergent modifications of azaarene frameworks using common substrates are challenging, despite the potential to maximize structural diversity and complexity. Here we report the tunable skeletal editing of quinolines through Brønsted acid-catalysed multicomponent reactions of quinoline N-oxides, dialkyl acetylenedicarboxylates and water to generate nitrogen-containing heteroaromatic compounds together with linear compounds in a modular fashion. Specifically, in a one-pot procedure, after cyclization and sequential rearrangement processes, the quinoline N-oxides are easily converted into unique 2-substituted indolines. These then undergo acid-promoted fragmentation to give indoles, base-facilitated ring-opening to afford 2-alkenylanilines and oxidative cyclization to yield isoquinolinones. Catalytic asymmetric skeletal editing of quinolines is also realized, providing enantioenriched benzazepines bearing quaternary stereocentres, and late-stage skeletal modification of quinoline cores in several drugs is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skeletal editing of heterocycles.
Fig. 2: Scale-up reactions, synthetic transformation of the products, control experiments and reaction pathways.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2334869 (84), CCDC 2401914 (103), CCDC 2385984 (109) and CCDC 2334870 (110). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Callis, T. B., Garrett, T. R., Montgomery, A. P., Danon, J. J. & Kassiou, M. Recent scaffold hopping applications in central nervous system drug discovery. J. Med. Chem. 65, 13483–13504 (2022).

    CAS  PubMed  Google Scholar 

  6. Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).

    CAS  PubMed  Google Scholar 

  7. Joynson, B. W. & Ball, L. T. Skeletal editing: interconversion of arenes and heteroarenes. Helv. Chim. Acta 106, e202200182 (2023).

    CAS  Google Scholar 

  8. Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).

    CAS  PubMed  Google Scholar 

  9. Díaz-Requejo, M. M. & Pérez, P. J. Coinage metal catalyzed C-H bond functionalization of hydrocarbons. Chem. Rev. 108, 3379–3394 (2008).

    PubMed  Google Scholar 

  10. Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Suzuki, T., Hamura, T. & Suzuki, K. Ring selectivity: successive ring expansion of two benzocyclobutenes for divergent access to angular and linear benzanthraquinones. Angew. Chem. Int. Ed. 47, 2248–2252 (2008).

    CAS  Google Scholar 

  12. Bi, H. & Wang, S. R. Modular regiodivergent synthesis of benzo-fused isocoumarins by a cyclopropane aromatization strategy. Org. Lett. 24, 6316–6320 (2022).

    CAS  PubMed  Google Scholar 

  13. Schmitt, H. L. et al. Regiodivergent ring-expansion of oxindoles to quinolinones. J. Am. Chem. Soc. 146, 4301–4308 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, S. et al. Tunable molecular editing of indoles with fluoroalkyl carbenes. Nat. Chem. 16, 988–997 (2024).

    PubMed  Google Scholar 

  15. Uhlenbruck, B. J. H., Josephitis, C. M., Lescure, L., Paton, R. S. & McNally, A. A deconstruction–reconstruction strategy for pyrimidine diversification. Nature 631, 87–93 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  PubMed  Google Scholar 

  19. Kallitsis, J. K., Geormezi, M. & Neophytides, S. G. Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units. Polym. Int. 58, 1226–1233 (2009).

    CAS  Google Scholar 

  20. Zhou, F. & Jiao, L. Recent developments in transition-metal-free functionalization and derivatization reactions of pyridines. Synlett 32, 159–178 (2021).

    CAS  Google Scholar 

  21. Boudry, E., Bourdreux, F., Marrot, J., Moreau, X. & Ghiazza, C. Dearomatization of pyridines: photochemical skeletal enlargement for the synthesis of 1,2-diazepines. J. Am. Chem. Soc. 146, 2845–2854 (2024).

    CAS  PubMed  Google Scholar 

  22. Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. 16, 741–748 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Roswell, B. R., Zhao, Z., Gonciarz, R. L. & Pandya, K. M. Regioselective pyridine to benzene edit inspired by water-displacement. J. Am. Chem. Soc. 146, 19660–19666 (2024).

    Google Scholar 

  24. Li, L., Chen, Z., Zhang, X. & Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev. 118, 3752–3832 (2018).

    CAS  PubMed  Google Scholar 

  25. Musonda, C. C. et al. Application of multi-component reactions to antimalarial drug discovery. Part 1: Parallel synthesis and antiplasmodial activity of new 4-aminoquinoline Ugi adducts. Bioorg. Med. Chem. Lett. 14, 3901–3905 (2004).

    CAS  PubMed  Google Scholar 

  26. Dömling, A., Achatz, S. & Beck, B. Novel anti-tuberculosis agents from MCR libraries. Bioorg. Med. Chem. Lett. 17, 5483–5486 (2007).

    PubMed  Google Scholar 

  27. Ishiguro, Y., Funakoshi, K., Saeki, S. & Hamana, M. The reaction of 2-substituted quinoline 1-oxides with dimethyl acetylenedicarboxylate: formation of 1-benzazepine derivatives. Heterocycles 20, 1545–1547 (1983).

    CAS  Google Scholar 

  28. Ryzhakov, A. V. & Rodina, L. L. Aromatic N-oxides as 1,3-dipoles and π-donors in reactions with unsaturated compounds. Review. Chem. Heterocycl. Compd 28, 483–493 (1992).

    Google Scholar 

  29. Ochiai, E. Recent Japanese work on the chemistry of pyridine 1-oxide and related compounds. J. Org. Chem. 18, 534–551 (1953).

    CAS  Google Scholar 

  30. Bull, J. A., Mousseau, J. J., Pelletier, G. & Charette, A. B. Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem. Rev. 112, 2642–2713 (2012).

    CAS  PubMed  Google Scholar 

  31. Liu, X. & Qin, Y. Indole alkaloid synthesis facilitated by photoredox catalytic radical cascade reactions. Acc. Chem. Res. 52, 1877–1891 (2019).

    CAS  PubMed  Google Scholar 

  32. Zhang, Y., Jiang, F. & Shi, F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc. Chem. Res. 53, 425–446 (2020).

    CAS  PubMed  Google Scholar 

  33. Tomioka, Y., Nagahiro, C., Nomura, Y. & Maruoka, H. Synthesis and 1,3-dipolar cycloaddition reactions of N-aryl-C,C-dimethoxycarbonylnitrones. J. Heterocyclic. Chem. 40, 121–127 (2003).

    CAS  Google Scholar 

  34. Yang, H., Wei, Y. & Shi, M. Construction of spiro[indoline]oxindoles through one-pot thermal-induced [3+2] cycloaddition/silica gel-promoted fragmentation sequence between isatin ketonitrones and electron-deficient alkynes. Tetrahedron 69, 4088–4097 (2013).

    CAS  Google Scholar 

  35. Jiang, H., Gao, H., Liu, B. & Wu, W. Palladium-catalyzed selective aminoamidation and aminocyanation of alkenes using isonitrile as amide and cyanide sources. Chem. Commun. 50, 15348–15351 (2014).

    CAS  Google Scholar 

  36. Baciocchi, E., Dell'Aira, D. & Ruzziconi, R. Dimethyl arylmalonates from cerium(IV) ammonium nitrate promoted reactions of dimethylmalonate with aromatic compounds in methanol. Tetrahedron Lett. 27, 2763–2766 (1986).

    CAS  Google Scholar 

  37. Zhang, Y. & Li, C. DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones. J. Am. Chem. Soc. 128, 4242–4243 (2006).

    CAS  PubMed  Google Scholar 

  38. Martino, E. et al. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett. 27, 701–707 (2017).

    CAS  PubMed  Google Scholar 

  39. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 148, 104398 (2019).

    CAS  PubMed  Google Scholar 

  40. Fleming, G. S. & Beeler, A. B. Regioselective and enantioselective intermolecular Buchner ring expansions in flow. Org. Lett. 19, 5268–5271 (2017).

    CAS  PubMed  Google Scholar 

  41. Zhang, X. et al. Asymmetric dearomative single-atom skeletal editing of indoles and pyrroles. Nat. Chem. 17, 215–225 (2025).

    CAS  PubMed  Google Scholar 

  42. Kricka, L. J. & Ledwith, A. Dibenz[b,f]azepines and related ring systems. Chem. Rev. 74, 101–123 (1974).

    CAS  Google Scholar 

  43. Pindur, U. & Flo, C. First reactions of dialkoxycarbenium tetrafluoroborates with pyrroles, 5H-dibenz[b,f]azepines, and electron-rich arenes. J. Heterocyclic. Chem. 26, 1563–1568 (1989).

    CAS  Google Scholar 

  44. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Google Scholar 

  45. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Google Scholar 

  46. Maier, G. The norcaradiene problem. Angew. Chem. Int. Ed. 6, 402–413 (1967).

    CAS  Google Scholar 

  47. Bi, H., Shen, C. & Wang, S. R. Catalytic dearomative [1,5]-sigmatropic carbon shift of heterole-fused norcaradienes enabled concise helicenation. Angew. Chem. Int. Ed. 64, e202415839 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 22371183 and 22101172 to H.W.). We thank L.-L. Li for the X-ray structural analysis of compounds 84, 103, 109 and 110.

Author information

Authors and Affiliations

Authors

Contributions

D.T., Y.-P.H., L.-S.Y. and Z.-C.L. designed the experiments and collected and analysed the data. D.T. optimized the reaction conditions and performed the experiments. Y.-P.H. determined and optimized the initial reaction conditions for asymmetric skeletal editing. L.-S.Y. and Z.-C.L. contributed to the preparation of substrates. H.W. supervised the research and conceived the project. H.W. wrote the paper with input from all authors.

Corresponding author

Correspondence to Hua Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Sunewang R. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1–11, experimental procedures, synthetic procedures, characterization data, NMR spectra and HPLC traces.

Supplementary Data 1

Crystallographic data for compound 84; CCDC reference 2334869.

Supplementary Data 2

Structure factors of compound 84; CCDC reference 2334869.

Supplementary Data 3

Crystallographic data for compound 103; CCDC reference 2401914.

Supplementary Data 4

Structure factors of compound 103; CCDC reference 2401914.

Supplementary Data 5

Crystallographic data for compound 109; CCDC reference2385984.

Supplementary Data 6

Structure factors of compound 109; CCDC reference 2385984.

Supplementary Data 7

Crystallographic data for compound 110; CCDC reference 2334870.

Supplementary Data 8

Structure factors of compound 110; CCDC reference 2334870.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., He, YP., Yang, LS. et al. Switchable skeletal editing of quinolines enabled by cyclizative sequential rearrangements. Nat. Chem. 17, 952–960 (2025). https://doi.org/10.1038/s41557-025-01793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01793-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing