Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule-catalysed deamination enables transcriptome-wide profiling of N6-methyladenosine in RNA

Abstract

The deamination reaction is important to both fundamental organic chemistry and biochemistry. Traditional chemical methods of deamination rely on the use of aryldiazonium salts under harsh acidic conditions, which limits the application scope for most biological substrates. Here we present an N-nitrosation strategy for deamination under mild conditions that DNA and RNA biological macromolecules can tolerate. Cooperative catalysis combining a carbonyl organocatalyst with a Lewis acid catalyst facilitates the formation of a carbon–nitro intermediate from a primary amine, which, on rearrangement into N-nitrosamine, leads to the selective deamination of unsubstituted canonical DNA/RNA bases under mild conditions. We used this approach to deaminate adenine into hypoxanthine, read as guanine by reverse transcriptases or DNA polymerases, while N6-methyladenosine sites resist deamination and remain identified as adenine. This reactivity enables a chemically mild, low-input detection method for sequencing of adenosine methylation at base resolution, named chemical cooperative catalysis-assisted N6-methyladenosine sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cooperative deamination of primary amines catalysed by a carbonyl organocatalyst and Lewis acid.
Fig. 2: Deamination of nucleobases catalysed by a organocatalyst combined with a Lewis acid.
Fig. 3: Mechanistic investigations and catalytic cycle.
Fig. 4: Optimization of deamination in oligonucleotides.
Fig. 5: Optimization of the CAM-seq protocol.
Fig. 6: Accurate quantification of m6A modification reveals m6A deposition at the motif level.
Fig. 7: Factors affecting m6A variation.

Similar content being viewed by others

Data availability

Sequencing data have been deposited in the Gene Expression Omnibus (GEO) with the following accession numbers: GSE268871 for the human samples, GSE268872 for the maize samples and GSE268873 for the Arabidopsis samples. All other data are available in the paper or the Supplementary Information. Source data are provided with this paper.

Code availability

Reads mapping and m6A sites detection scripts are available at GitHub via https://github.com/y9c/m6A-CAMseq (ref. 33).

References

  1. Chen, X., Xu, H., Shu, X. & Song, C.-X. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ. https://doi.org/10.1038/s41418-023-01213-1 (2023).

  2. Kim, S. C. et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. 18, 1–8 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, A. & Wang, X. The pivotal role of chemical modifications in mRNA therapeutics. Front. Cell Dev. Biol. 10, 901510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Breiling, A. & Lyko, F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8, 24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Khoddami, V. et al. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc. Natl Acad. Sci. USA 116, 6784–6789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01505-w (2022).

  9. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai, Q. et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02034-w (2024).

  11. Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01243-z (2022).

  12. Xiao, Y.-L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Nappi, M., Hofer, A., Balasubramanian, S. & Gaunt, M. J. Selective chemical functionalization at N6-methyladenosine residues in DNA enabled by visible-light-mediated photoredox catalysis. J. Am. Chem. Soc. 142, 21484–21492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werner, S. et al. NOseq: amplicon sequencing evaluation method for RNA m6A sites after chemical deamination. Nucleic Acids Res. 49, e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Mahdavi-Amiri, Y., Chung, K. C. K. & Hili, R. Single-nucleotide resolution of N6-adenine methylation sites in DNA and RNA by nitrite sequencing. Chem. Sci. 12, 606–612 (2021).

    Article  CAS  Google Scholar 

  17. Li, X. et al. NT-seq: a chemical-based sequencing method for genomic methylome profiling. Genome Biol. 23, 122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, W. et al. GLORI for absolute quantification of transcriptome-wide m6A at single-base resolution. Nat. Protoc. 19, 1252–1287 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Keeper, L. K. & Roller, P. P. N-Nitrosation by nitrite ion in neutral and basic medium. Science 181, 1245–1247 (1973).

    Article  Google Scholar 

  20. Lai, C., Lin, G., Wang, W. & Luo, H. Absolute configurations and stability of cyclic guanosine mono-adducts with glyoxal and methylglyoxal. Chirality 23, 487–494 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Marek, R. & Lycka, A. 15N NMR spectroscopy in structural analysis. Curr. Org. Chem. 6, 35–66 (2002).

    Article  CAS  Google Scholar 

  22. Marek, R., Lycka, A., Kolehmainen, E., Sievanen, E. & Tousek, J. 15N NMR spectroscopy in structural analysis: an update (2001–2005). Curr. Org. Chem. 11, 1154–1205 (2007).

    Article  CAS  Google Scholar 

  23. Arkhipenko, S. et al. Mechanistic insights into boron-catalysed direct amidation reactions. Chem. Sci. 9, 1058–1072 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ge, R. et al. m6A-SAC-seq for quantitative whole transcriptome m6A profiling. Nat. Protoc. 18, 626–657 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Weng, X. et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat. Chem. Biol. 16, 489–492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, T., Lyu, R., You, Q. & He, C. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat. Methods 17, 515–523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, F. H., Castro, M. M., Aboul-ela, F. & Tinoco, I. Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 13, 8927–8938 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, Y. Y., Reddy, K., Vangaveti, S. & Sheng, J. Inosine-induced base pairing diversity during reverse transcription. ACS Chem. Biol. 19, 348–356 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meyer, K. D. et al. Comprehensive Analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Campos, M. A. et al. Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Wei, C.-M. & Moss, B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, Y. m6A-CAM-seq. https://github.com/y9c/m6A-CAMseq (2024).

Download references

Acknowledgements

We thank Y. Ge, Y. Gao and Y. Xiao for discussions. We thank the Genomics Facility of the University of Chicago and the University of Chicago Comprehensive Cancer Center DNA Sequencing and Genotyping Facility for assistance with sequencing. This study was supported by the National Institutes of Health (grant HG008935, C.H.). C.H. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.H., P.W. and C.Y. conceived the original idea and designed the original studies; P.W. performed most of the experiments with help from M.Z. and B.J; C.Y. performed most of the bioinformatics analyses with input from P.W; B.J. provided the plant materials. All authors approved the final paper.

Corresponding author

Correspondence to Chuan He.

Ethics declarations

Competing interests

C.H. is a scientific founder, a member of the scientific advisory board and equity holder of Aferna Bio and Ellis Bio, a scientific cofounder and equity holder of Accent Therapeutics, and a member of the scientific advisory board of Rona Therapeutics and Element Biosciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Thomas Carell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Figs. 1–18, Tables 1–3, Notes I and II, and references.

Reporting Summary

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Ye, C., Zhao, M. et al. Small-molecule-catalysed deamination enables transcriptome-wide profiling of N6-methyladenosine in RNA. Nat. Chem. 17, 1042–1052 (2025). https://doi.org/10.1038/s41557-025-01801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01801-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research