Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exo-templating via pseudorotaxane formation reduces pathway complexity in the multicomponent self-assembly of M12L24 nanospheres

Abstract

Selective formation of multicomponent structures via the self-assembly of numerous building blocks is ubiquitous in biological systems but challenging to emulate synthetically. More components introduce additional possibilities for kinetic intermediates with trap-state ability, hampering access to desired products. In covalent chemistry, templates, reagents and catalysts are applied to create alternative pathways for desired product formation. Analogously, we enlist exo-templating to mould the formation of large, multicomponent supramolecular structures. Specifically, a charged ring docks at 1,5-dioxynaphthalene stations within exo-functionalized building blocks to promote formation of cuboctahedral Pd12L24 nanospheres via exoskeletal templating. With the exo-templating ring present, nanosphere formation occurs via small Pdx–Ly oligomers, while in the absence of the ring a Pdx–Ly polymer resting state rapidly evolves, from which nanosphere formation occurs slowly. We demonstrate a form of kinetic templating—via intermediate destabilization—resembling properties observed in catalysis. Importantly, unlike typically employed endo-templates, we demonstrate that exo-templating is particularly suited for larger, complex, self-assembled structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of pathway complexity and the template effect.
Fig. 2: Investigation of the self-assembly of Pd12(LMeO)24 nanospheres.
Fig. 3: The formation of the nanospheres via different pathways.
Fig. 4: Exo-templated versus non-templated self-assembly of M12L24 nanosphere at 25 °C and 10 °C.
Fig. 5: Pathway switching for self-assembly of M12L24 nanosphere at 10°C.

Similar content being viewed by others

Data availability

The raw data generated during this study are available in the Supplementary Information. All raw data that support the findings of this study are available via Figshare at https://doi.org/10.6084/m9.figshare.28163420.v1 (ref. 85). Source data are provided with this paper.

Code availability

Input and automation codes for AMBER simulations are supplied with computational results and are available via Figshare at https://doi.org/10.6084/m9.figshare.28163420.v1 (ref. 85).

References

  1. Rizzuto, F. J., von Krbek, L. K. S. & Nitschke, J. R. Strategies for binding multiple guests in metal–organic cages. Nat. Rev. Chem. 3, 204–222 (2019).

    Article  Google Scholar 

  2. Gramage-Doria, R. et al. Gold(I) catalysis at extreme concentrations inside self-assembled nanospheres. Angew. Chem. Int. Ed. Engl. 53, 13380–13384 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Jongkind, L. J., Elemans, J. A. A. W. & Reek, J. N. H. Cofactor controlled encapsulation of a rhodium hydroformylation catalyst. Angew. Chem. Int. Ed. Engl. 58, 2696–2699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dydio, P., Dzik, W. I., Lutz, M., de Bruin, B. & Reek, J. N. H. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angew. Chem. Int. Ed. Engl. 50, 396–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Yoshioka, S., Inokuma, Y., Hoshino, M., Sato, T. & Fujita, M. Absolute structure determination of compounds with axial and planar chirality using the crystalline sponge method. Chem. Sci. 6, 3765–3768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sepehrpour, H., Fu, W., Sun, Y. & Stang, P. J. Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 141, 14005–14020 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dankers, P. Y. W. et al. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney. Macromol. Biosci. 10, 1345–1354 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Anelli, P. L. et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992).

    Article  CAS  Google Scholar 

  11. Bols, P. S. & Anderson, H. L. Template-directed synthesis of molecular nanorings and cages. Acc. Chem. Res. 51, 2083–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Fuller, A.-M. L., Leigh, D. A. & Lusby, P. J. One template, multiple rings: controlled iterative addition of macrocycles onto a single binding site rotaxane thread. Angew. Chem. Int. Ed. Engl. 46, 5015–5019 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Meng, W. et al. A self-assembled M8L6 cubic cage that selectively encapsulates large aromatic guests. Angew. Chem. Int. Ed. Engl. 50, 3479–3483 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. Engl. 48, 3418–3438 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Sun, Q.-F., Murase, T., Sato, S. & Fujita, M. A sphere-in-sphere complex by orthogonal self-assembly. Angew. Chem. Int. Ed. Engl. 50, 10318–10321 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Clever, G. H. & Punt, P. Cation–anion arrangement patterns in self-assembled Pd2L4 and Pd4L8 coordination cages. Acc. Chem. Res. 50, 2233–2243 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Rao, S.-J., Zhang, Q., Ye, X.-H., Gao, C. & Qu, D.-H. Integrative self-sorting: one-pot synthesis of a hetero[4]rotaxane from a daisy-chain-containing hetero[4]pseudorotaxane. Chem. Asian J. 13, 815–821 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. He, Z., Jiang, W. & Schalley, C. A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev. 44, 779–789 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Rama, T. et al. Integrative self-sorting of bipyridinium/diazapyrenium-based ligands into pseudo[1]rotaxanes. Chem. Eur. J. 23, 16743–16747 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Fahrenbach, A. C., Bruns, C. J., Cao, D. & Stoddart, J. F. Ground-state thermodynamics of bistable redox-active donor–acceptor mechanically interlocked molecules. Acc. Chem. Res. 45, 1581–1592 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Datta, S., Saha, M. L. & Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 51, 2047–2063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, A., Huang, J. & Yan, Y. Hierarchical molecular self-assemblies: construction and advantages. Soft Matter 10, 3362–3373 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).

    Article  CAS  Google Scholar 

  24. Chen, L. J. & Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 51, 2699–2710 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Service, R. F. How far can we push chemical self-assembly? Science 309, 95–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, F., Liao, R. & Wang, F. Pathway control of π‐conjugated supramolecular polymers by incorporating donor‐acceptor functionality. Angew. Chem. Int. Ed. Engl. 62, e202305827 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Borsdorf, L. et al. Pathway-controlled aqueous supramolecular polymerization via solvent-dependent chain conformation effects. J. Am. Chem. Soc. 145, 8882–8895 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    Article  CAS  Google Scholar 

  29. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Korevaar, P. A., De Greef, T. F. A. & Meijer, E. W. Pathway complexity in π-conjugated materials. Chem. Mat. 26, 576–586 (2014).

    Article  CAS  Google Scholar 

  31. Baskakov, I. V., Legname, G., Baldwin, M. A., Prusiner, S. B. & Cohen, F. E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 277, 21140–21148 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Stern, M., Jayaram, V. & Murugan, A. Shaping the topology of folding pathways in mechanical systems. Nat. Commun. 9, 4303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matern, J., Kartha, K. K., Sánchez, L. & Fernández, G. Consequences of hidden kinetic pathways on supramolecular polymerization. Chem. Sci. 11, 6780–6788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hori, A., Yamashita, K. I. & Fujita, M. Kinetic self-assembly: selective cross-catenation of two sterically differentiated PdII-coordination rings. Angew. Chem. Int. Ed. Engl. 43, 5016–5019 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Bohne, C. Supramolecular dynamics. Chem. Soc. Rev. 43, 4037–4050 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ran, N., Zhao, L., Chen, Z. & Tao, J. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem. 10, 361–372 (2008).

    Article  CAS  Google Scholar 

  38. Sheldon, R. A. E factors, green chemistry and catalysis: an odyssey. Chem.Commun. 39, 3352–3365 (2008).

    Article  Google Scholar 

  39. Catalyst. In The IUPAC Compendium of Chemical Terminology (eds Kaiser, J. & Chalk, S.) (International Union of Pure and Applied Chemistry (IUPAC), 2019).

  40. Rothenberg, G. Catalysis (Wiley-VHC Verlag GmbH & Co. KGaA, 2008).

  41. van Leeuwen, P. W. N. M. Homogeneous Catalysis Understanding the Art (Kluwer Academic Publishers, 2004).

  42. Busacca, C. A., Fandrick, D. R., Song, J. J. & Senanayake, C. H. in Applications of Transition Metal Catalysis in Drug Discovery and Development (eds Crawley, M. L. & Trost, B. M.) 1–24 (Wiley, 2012).

  43. Knözinger, H. & Kochloefl, K. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2003).

  44. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (MIT Press, 2004).

  45. Dub, P. A. & Gordon, J. C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat. Rev. Chem. 2, 396–408 (2018).

    Article  CAS  Google Scholar 

  46. Gimeno, N. & Vilar, R. Anions as templates in coordination and supramolecular chemistry. Coord. Chem. Rev. 250, 3161–3189 (2006).

    Article  CAS  Google Scholar 

  47. Busch, D. H. In The Pedersen Memorial Issue, Advances in Inclusion Science Vol. 7 (eds Izatt, R. M. & Bradshaw, J. S.) 389–395 (Springer, 1992).

  48. Anderson, S., Anderson, H. L. & Sanders, J. K. M. Expanding roles for templates in synthesis. Acc. Chem. Res. 26, 469–475 (1993).

    Article  CAS  Google Scholar 

  49. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    Article  CAS  Google Scholar 

  50. Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

    Article  Google Scholar 

  51. Rapenne, G., Dietrich-Buchecker, C. & Sauvage, J. P. Copper(I)- or iron(II)-templated synthesis of molecular knots containing two tetrahedral or octahedral coordination sites. J. Am. Chem. Soc. 121, 994–1001 (1999).

    Article  CAS  Google Scholar 

  52. Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 56, 11080–11093 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Asakawa, M. et al. Improved template-directed synthesis of cyclobis(paraquat-p-phenylene). J. Org. Chem. 61, 9591–9595 (1996).

    Article  CAS  Google Scholar 

  54. Ashton, P. R. et al. Molecular meccano. 4. The self-assembly of [2]catenanes incorporating photoactive and electroactive π-extended systems. J. Am. Chem. Soc. 117, 11171–11197 (1995).

    Article  Google Scholar 

  55. Ibukuro, F., Kusukawa, T. & Fujita, M. The guest-template syntheses of the host frameworks. J. Am. Chem. Soc. 120, 8561–8562 (1998).

    Article  CAS  Google Scholar 

  56. Tateishi, T. et al. Navigated self-assembly of a Pd2L4 cage by modulation of an energy landscape under kinetic control. J. Am. Chem. Soc. 141, 19669–19676 (2020).

    Article  Google Scholar 

  57. Poleschak, I., Kern, J.-M. & Sauvage, J.-P. A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. Chem. Commun. 4, 474–476 (2004).

    Article  Google Scholar 

  58. Takahashi, S., Tateishi, T., Sasaki, Y., Sato, H. & Hiraoka, S. Towards kinetic control of coordination self-assembly: a case study of a Pd3L6 double-walled triangle to predict the outcomes by a reaction network model. Phys. Chem. Chem. Phys. 22, 26614–26626 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Furlan, R. L. E., Otto, S. & Sanders, J. K. M. Supramolecular templating in thermodynamically controlled synthesis. Proc. Natl Acad. Sci. USA 99, 4801–4804 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loiseau, T. & Férey, G. Synthesis and X-ray structural characterization of a novel oxyfluorinated microporous gallium phosphate with encapsulated 1,4-diazabicyclo[2.2.2]octane as the template: Ga3(PO4)(HPO4)2F3(OH)C6N2H14·0.5H2O. J. Chem. Commun. 17, 1197–1198 (1992).

  61. Day, V. W., Klemperer, W. G. & Yaghi, O. M. Synthesis and characterization of a soluble oxide inclusion complex, [CH3CN(V12O324−)]. J. Am. Chem. Soc. 111, 5959–5961 (1989).

    Article  CAS  Google Scholar 

  62. Sun, Q. F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Harris, K., Fujita, D. & Fujita, M. Giant hollow MnL2n spherical complexes: structure, functionalisation and applications. Chem. Commun. 49, 6703–6712 (2013).

    Article  CAS  Google Scholar 

  64. Fujita, D., Yokoyama, H., Ueda, Y., Sato, S. & Fujita, M. Geometrically restricted intermediates in the self-assembly of an M12L24 cuboctahedral complex. Angew. Chem. Int. Ed. Engl. 54, 155–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Kai, S., Shigeta, T., Kojima, T. & Hiraoka, S. Quantitative analysis of the self-assembly process of a Pd12L24 coordination sphere. Chem. Asian J. 12, 3203–3207 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Yoneya, M., Tsuzuki, S., Yamaguchi, T., Sato, S. & Fujita, M. Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. ACS Nano 8, 1290–1296 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Poole, D. A., Bobylev, E. O., Mathew, S. & Reek, J. N. H. Topological prediction of palladium coordination cages. Chem. Sci. 11, 12350–12357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bobylev, E. O., Poole, D. A., Bruin, B. & Reek, J. N. H. How to prepare kinetically stable self‐assembled Pt12L24 nanocages while circumventing kinetic traps. Chem. Eur. J. 27, 12667–12674 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Bobylev, E., Poole, D., de Bruin, B. & Reek, J. N. H. Selective formation of Pt12L24 nanospheres by ligand design. Chem. Sci. 12, 7696–7705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato, S., Ishido, Y. & Fujita, M. Remarkable stabilization of M12L24 spherical frameworks through the cooperation of 48 Pd(II)-pyridine interactions. J. Am. Chem. Soc. 131, 6064–6065 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Barnes, J. C., Juríček, M., Vermeulen, N. A., Dale, E. J. & Stoddart, J. F. Synthesis of ExnBox cyclophanes. J. Org. Chem. 78, 11962–11969 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Bruns, C. J. et al. Emergent ion-gated binding of cationic host–guest complexes within cationic M12L24 molecular flasks. J. Am. Chem. Soc. 136, 12027–12034 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Venturi, M., Dumas, S., Balzani, V., Cao, J. & Stoddart, J. F. Threading/dethreading processes in pseudorotaxanes. A thermodynamic and kinetic study. New J. Chem. 28, 1032–1037 (2004).

    Article  CAS  Google Scholar 

  74. Castro, R., Nixon, K. R., Evanseck, J. D. & Kaifer, A. E. Effects of side arm length and structure of para-substituted phenyl derivatives on their binding to the host cyclobis(paraquat-p-phenylene). J. Org. Chem. 61, 7298–7303 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Poole, D. A. III, Bobylev, E. O., Mathew, S. & Reek, J. N. H. Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages. Chem. Sci. 13, 10141–10148 (2022).

    Article  CAS  Google Scholar 

  76. Activation energy. In The IUPAC Compendium of Chemical Terminology 5th edn (eds Kaiser, J. & Chalk, S.) Online version 5.0.0 (International Union of Pure and Applied Chemistry, 2025).

  77. Li, D. et al. Viral‐capsid‐type vesicle‐like structures assembled from M12L24 metal–organic hybrid nanocages. Angew. Chem. Int. Ed. Engl. 50, 5182–5187 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Li, H., Luo, J. & Liu, T. Modification of the solution behavior of Pd12L24 metal–organic nanocages via PEGylation. Chem. Eur. J. 22, 17949–17952 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, C. et al. Balancing ligand flexibility versus rigidity for the stepwise self‐assembly of M12L24 via M6L12 metal–organic cages. Chem. Eur. J. 26, 11960–11965 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. MacCuspie, R. I. et al. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J. Environ. Monit. 13, 1212 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Farkas, N., Scaria, P. V., Woodle, M. C. & Dagata, J. A. Physical-chemical measurement method development for self-assembled, core-shell nanoparticles. Sci. Rep. 9, 1655 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kikuchi, T., Sato, S., Fujita, D. & Fujita, M. Stepwise DNA condensation by a histone-mimic peptide-coated M12L24 spherical complex. Chem. Sci. 5, 3257 (2014).

    Article  CAS  Google Scholar 

  83. Kamiya, N., Tominaga, M., Sato, S. & Fujita, M. Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins. J. Am. Chem. Soc. 129, 3816–3817 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Sun, Q.-F., Sato, S. & Fujita, M. An M12(L1)12(L2)12 cantellated tetrahedron: a case study on mixed-ligand self-assembly. Angew. Chem. Int. Ed. Engl. 53, 13510–13513 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Reek. J. N. H. et al. NCHEM-22122509B_Reeketal_FIGSHARE.rar. Figshare https://doi.org/10.6084/m9.figshare.28163420.v1 (2025).

Download references

Acknowledgements

This study was supported by the Holland Research School for Molecular Sciences (HRSMC) and the University of Amsterdam. We acknowledge the University of Amsterdam for financial support to RPA sustainable chemistry. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank A. Ehlers for support performing the 1H NMR studies and E. Zuidinga for help carrying out the MS experiments.

Author information

Authors and Affiliations

Authors

Contributions

T.B., S.M. and J.N.H.R. proposed, designed and conceptualized the research. T.B. synthesized and characterized the ligands, the macrocycle and pseudorotaxane, together with S.M. All NMR experiments were performed by T.B. supported by D.A.P. and S.M. The ESI–MS measurements were performed and analysed by T.B. and E.O.B. The MD simulations were carried out and analysed by D.A.P. The DLS and AFM experiments were performed and analysed by S.M., L.S.D.A. and E.A.-L. Remaining experiments were designed by T.B., S.M. and J.N.H.R. Funding acquisition was by T.B. and J.N.H.R. and project administration was realized by T.B. and S.M. The supervisors during this project were S.M., E.A.-L. and J.N.H.R. The manuscript was prepared by T.B., S.M. and J.N.H.R. and revised with the input of all authors.

Corresponding author

Correspondence to J. N. H. Reek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Yuya Domoto, Divya Nayar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods, experimental details, Supplementary Figs. 1–40 and Tables 1–5.

Source data

Source Data Fig. 2

Source data NMR.

Source Data Fig. 4

Source data NMR and MS.

Source Data Fig. 5

Source data DLS and AFM.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouwens, T., Bobylev, E.O., Antony, L.S.D. et al. Exo-templating via pseudorotaxane formation reduces pathway complexity in the multicomponent self-assembly of M12L24 nanospheres. Nat. Chem. 17, 1067–1075 (2025). https://doi.org/10.1038/s41557-025-01808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01808-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing