Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abiotic lipid metabolism enables membrane plasticity in artificial cells

Abstract

The plasticity of living cell membranes relies on complex metabolic networks fueled by cellular energy. These metabolic processes exert direct control over membrane properties such as lipid composition and morphological plasticity, which are essential for cellular functions. Despite notable progress in the development of artificial systems mimicking natural membranes, the realization of synthetic membranes capable of sustaining metabolic cycles remains a challenge. Here we present an abiotic phospholipid metabolic network that generates and maintains dynamic artificial cell membranes. Chemical coupling agents drive the in situ synthesis of transiently stable non-canonical phospholipids, leading to the formation and maintenance of phospholipid membranes. We find that phospholipid metabolic cycles can drive lipid self-selection, favouring the enrichment of specific lipid species. Moreover, we demonstrate that controlling lipid metabolism can induce reversible membrane phase transitions, facilitating lipid mixing between distinct populations of artificial membranes. Our work demonstrates that a simple lipid metabolic network can drive dynamic behaviour in artificial membranes, offering insights into mechanisms for engineering functional synthetic compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishing an abiotic phospholipid metabolic network.
Fig. 2: Characterization of the synthetic phospholipid metabolic network.
Fig. 3: Enrichment of specific phospholipids during synthetic metabolism.
Fig. 4: Membrane phase transitions governed by a phospholipid metabolic network.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Edidin, M. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4, 414–418 (2003).

    CAS  PubMed  Google Scholar 

  2. Lombard, J. Once upon a time the cell membranes: 175 years of cell boundary research. Biol. Direct 9, 32 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Frolov, V. A., Shnyrova, A. V. & Zimmerberg, J. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3, a004747 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Feigenson, G. W. Phase behavior of lipid mixtures. Nat. Chem. Biol. 2, 560–563 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lipowsky, R. Remodeling of membrane compartments: some consequences of membrane fluidity. Biol. Chem. 395, 253–274 (2014).

    CAS  PubMed  Google Scholar 

  7. Wang, B. & Tontonoz, P. Phospholipid remodeling in physiology and disease. Annu. Rev. Physiol. 81, 165–188 (2019).

    PubMed  Google Scholar 

  8. Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014).

    CAS  PubMed  Google Scholar 

  9. Shindou, H., Hishikawa, D., Harayama, T., Yuki, K. & Shimizu, T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J. Lipid Res. 50, S46–S51 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Murakami, M. & Kudo, I. Phospholipase A2. J. Biochem. 131, 285–292 (2002).

    CAS  PubMed  Google Scholar 

  11. Budin, I. & Devaraj, N. K. Membrane assembly driven by a biomimetic coupling reaction. J. Am. Chem. Soc. 134, 751–753 (2012).

    CAS  PubMed  Google Scholar 

  12. Brea, R. J., Cole, C. M. & Devaraj, N. K. In situ vesicle formation by native chemical ligation. Angew. Chem. Int. Ed. 53, 14102–14105 (2014).

    CAS  Google Scholar 

  13. Flores, J. et al. Rapid and sequential dual oxime ligation enables de novo formation of functional synthetic membranes from water-soluble precursors. Angew. Chem. Int. Ed. 61, e202200549 (2022).

    CAS  Google Scholar 

  14. Bhattacharya, A. et al. Chemoselective esterification of natural and prebiotic 1,2-amino alcohol amphiphiles in water. J. Am. Chem. Soc. 145, 27149–27159 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, J. et al. Rapid formation of non-canonical phospholipid membranes by chemoselective amide-forming ligations with hydroxylamines. Angew. Chem. Int. Ed. 63, e202311635 (2024).

    CAS  Google Scholar 

  16. Pols, T. et al. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Podolsky, K. A. & Devaraj, N. K. Synthesis of lipid membranes for artificial cells. Nat. Rev. Chem. 5, 676–694 (2021).

  18. Kurisu, M. et al. Synthesising a minimal cell with artificial metabolic pathways. Commun. Chem. 6, 56 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Grötsch, R. K. et al. Dissipative self-assembly of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. 57, 14608–14612 (2018).

    Google Scholar 

  20. Grötsch, R. K. et al. Pathway dependence in the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).

    PubMed  Google Scholar 

  21. Tena-Solsona, M. et al. Accelerated ripening in chemically fueled emulsions. ChemSystemsChem 3, e2000034 (2020).

    Google Scholar 

  22. Schwarz, P. S., Tena-Solsona, M., Dai, K. & Boekhoven, J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem. Commun. 58, 1284–1297 (2022).

    CAS  Google Scholar 

  23. Anderson, G. W., Zimmerman, J. E. & Callahan, F. M. N-Hydroxysuccinimide esters in peptide synthesis. J. Am. Chem. Soc. 85, 3039 (1963).

    CAS  Google Scholar 

  24. Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R. M. & Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, W., So, P. T., French, T. & Gratton, E. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys. J. 70, 626–636 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hulett, H. R. Non-enzymatic hydrolysis of adenosine phosphates. Nature 225, 1248–1249 (1970).

    CAS  PubMed  Google Scholar 

  27. Schnitter, F. et al. Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels. Nat. Protoc. 16, 3901–3932 (2021).

    CAS  PubMed  Google Scholar 

  28. Heberle, F. A. et al. Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc. Natl Acad. Sci. USA 117, 19943–19952 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kensil, C. R. & Dennis, E. A. Alkaline hydrolysis of phospholipids in model membranes and the dependence on their state of aggregation. Biochemistry 20, 6079–6085 (1981).

    CAS  PubMed  Google Scholar 

  30. Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Howlett, M. G., Scanes, R. J. H. & Fletcher, S. P. Selection between competing self-reproducing lipids: succession and dynamic activation. JACS Au 1, 1355–1361 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bonfio, C. et al. Length-selective synthesis of acylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Almsherqi, Z. A., Kohlwein, S. D. & Deng, Y. Cubic membranes: a legend beyond the Flatland* of cell membrane organization. J. Cell Biol. 173, 839–844 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mezzenga, R. et al. Nature-inspired design and application of lipidic lyotropic liquid crystals. Adv. Mater. 31, 1900818 (2019).

    Google Scholar 

  35. Jongsma, M. L. M., Berlin, I. & Neefjes, J. On the move: organelle dynamics during mitosis. Trends Cell Biol. 25, 112–124 (2015).

    CAS  PubMed  Google Scholar 

  36. von Wettstein, D. Discovery of a protein required for photosynthetic membrane assembly. Proc. Natl Acad. Sci. USA 98, 3633–3635 (2001).

    Google Scholar 

  37. Floris, D. & Kühlbrandt, W. Molecular landscape of etioplast inner membranes in higher plants. Nat. Plants 7, 514–523 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhattacharya, A. et al. Lipid sponge droplets as programmable synthetic organelles. Proc. Natl Acad. Sci. USA 117, 18206–18215 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moinpour, M. et al. Controlling protein enrichment in lipid sponge phase droplets using SNAP-tag bioconjugation. ChemBioChem 23, e202100624 (2022).

    CAS  PubMed  Google Scholar 

  40. Fracassi, A. et al. Characterizing the self-assembly properties of monoolein lipid isosteres. J. Phys. Chem. B 127, 1771–1779 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, T. & Spruijt, E. Multiphase complex coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saw, P. E. et al. Nanostructure engineering by simple tuning of lipid combinations. Angew. Chem. Int. Ed. 59, 6249–6252 (2020).

    CAS  Google Scholar 

  43. Manni, L. S., Fong, W.-K. & Mezzenga, R. Lipid-based mesophases as matrices for nanoscale reactions. Nanoscale Horiz. 5, 914–927 (2020).

    Google Scholar 

  44. Sun, W., Vallooran, J. J., Zabara, A. & Mezzenga, R. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement. Nanoscale 6, 6853–6859 (2014).

    CAS  PubMed  Google Scholar 

  45. Aleandri, S. & Mezzenga, R. The physics of lipidic mesophase delivery systems. Phys. Today 73, 38–44 (2020).

    CAS  Google Scholar 

  46. Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018).

    CAS  PubMed  Google Scholar 

  47. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Google Scholar 

  48. Rubio-Sánchez, R. et al. Thermally driven membrane phase transitions enable content reshuffling in primitive cells. J. Am. Chem. Soc. 143, 16589–16598 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Donau, C., Späth, F., Stasi, M., Bergmann, A. M. & Boekhoven, J. Phase transitions in chemically fueled, multiphase complex coacervate droplets. Angew. Chem. Int. Ed. 134, e202211905 (2022).

    Google Scholar 

  50. Yeagle, P. L., Smith, F. T., Young, J. E. & Flanagan, T. D. Inhibition of membrane fusion by lysophosphatidylcholine. Biochemistry 33, 1820–1827 (1994).

    CAS  PubMed  Google Scholar 

  51. Chernomordik, L., Chanturiya, A., Green, J. & Zimmerberg, J. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys. J. 69, 922–929 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fuller, N. & Rand, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, C. et al. Sponge-phase lipid droplets as synthetic organelles: an ultrafast study of hydrogen bonding and interfacial environments. ChemPhysChem 24, e202300404 (2023).

    CAS  PubMed  Google Scholar 

  54. Imura, T., Yanagishita, H. & Kitamoto, D. Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J. Am. Chem. Soc. 126, 10804–10805 (2004).

    CAS  PubMed  Google Scholar 

  55. Winnikoff, J. R. et al. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 384, 1482–1488 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Buddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lentini, R. et al. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3, 117–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dwidar, M. et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J. Am. Chem. Soc. 141, 11103–11114 (2019).

    CAS  PubMed  Google Scholar 

  59. Toparlak, Ö. D. et al. Artificial cells drive neural differentiation. Sci. Adv. 6, eabb4920 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gispert, I. et al. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc. Natl Acad. Sci. USA 119, e2206563119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bucci, J. et al. Enzyme-responsive DNA condensates. J. Am. Chem. Soc. 146, 31529–31537 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the facilities as well as the scientific and technical assistance of the staff of the cryoEM facility at UC San Diego. K. A. Podolsky is acknowledged for her contribution to the preparation of the figures. This work was funded by the National Science Foundation (CHE-2304664). R.J.B. thanks the MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe (PID2021-128113NA-I100), as well as the Consellería de Cultura, Educación e Universidade da Xunta de Galicia (ED431F 2024/07 and ED431B 2023/60) for funding. R.J.B. also thanks the MCIN/AEI/10.13039/501100011033 and ESF Investing in your future for his Ramón y Cajal contract (RYC2020-030065-I). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.F., A.S., R.J.B. and N.K.D. conceived the idea. A.F., A.S., R.J.B., H.-G.L. and A.H. synthesized the organic molecules, characterized the lipid assemblies and performed all the experiments presented in this paper. A.F., A.S., R.J.B. and N.K.D. analysed and interpreted the results. A.F., A.S., R.J.B. and N.K.D. wrote and reviewed the paper.

Corresponding author

Correspondence to Neal K. Devaraj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Marten Exterkate, Roger Rubio-Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Figs. 1–26, NMR spectra and references.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Fig. 4.

Supplementary Data 2

Statistical source data for Supplementary Fig. 5.

Supplementary Data 3

Statistical source data for Supplementary Fig. 19.

Supplementary Data 4

Statistical source data for Supplementary Fig. 20.

Supplementary Data 5

Statistical source data for Supplementary Fig. 21.

Supplementary Data 6

Statistical source data for Supplementary Fig. 22.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fracassi, A., Seoane, A., Brea, R.J. et al. Abiotic lipid metabolism enables membrane plasticity in artificial cells. Nat. Chem. 17, 799–807 (2025). https://doi.org/10.1038/s41557-025-01829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01829-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing