Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic C(sp2) homologation of alkylboranes

Abstract

Organoboron compounds are important intermediates in organic synthesis, commonly used in metal-catalysed cross-coupling reactions. Their unique reactivity also allows modifications of their carbon framework with preservation of the valuable boryl group. Traditionally, these homologation reactions have been confined to the formation of alkyl boron compounds via C(sp3) insertion into a C–B bond. However, recent advancements in C(sp2)-insertive homologation highlight the potential of these reactions in synthesizing complex alkenes, despite current limitations in scope and control of the alkene geometry. Here we demonstrate a catalytic C(sp2)-insertive homologation for the regio- and diastereoselective synthesis of complex trisubstituted diborylalkenes from simple alkylboranes and alkynyl boronic esters. Our work demonstrates a broad reaction scope and application of the resulting products in modular and stereoselective synthesis of highly substituted alkenes. Furthermore, we provide evidence supporting a unique mechanism responsible for the excellent stereoselectivity observed in the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homologation reactions of alkylboranes.
Fig. 2: Transformations of diborylalkene products.
Fig. 3: Mechanistic studies.

Similar content being viewed by others

Data availability

Crystallographic data for compound 29 are available free of charge from the Cambridge Crystallographic Data Centre under reference CCDC 2370487. All other data are available in the article or its Supplementary Information.

References

  1. Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Farfán-García, E. D. et al. Current data regarding the structure–toxicity relationship of boron-containing compounds. Toxicol. Lett. 258, 115–125 (2016).

    Article  PubMed  Google Scholar 

  3. Pagett, A. B. & Lloyd-Jones, G. C. in Organic Reactions (Wiley, 2019).

  4. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  5. Go, S. Y. et al. A unified synthetic strategy to introduce heteroatoms via electrochemical functionalization of alkyl organoboron reagents. J. Am. Chem. Soc. 144, 9149–9160 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, N., Liang, H. & Morken, J. P. Copper-catalyzed stereospecific transformations of alkylboronic esters. J. Am. Chem. Soc. 144, 11546–11552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kabalka, G. W., Shoup, T. M. & Goudgaon, N. M. Sodium perborate: a mild and convenient reagent for efficiently oxidizing organoboranes. J. Org. Chem. 54, 5930–5933 (1989).

    Article  CAS  Google Scholar 

  9. Kabalka, G. W. & Mereddy, A. R. Synthesis of organic bromides via organotrifluoroborates. Organometallics 23, 4519–4521 (2004).

    Article  CAS  Google Scholar 

  10. Liang, H., Berwanger, M. R. & Morken, J. P. Stereospecific phosphination and thioetherification of organoboronic esters. J. Am. Chem. Soc. 146, 18873–18878 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larouche-Gauthier, R., Elford, T. G. & Aggarwal, V. K. Ate complexes of secondary boronic esters as chiral organometallic-type nucleophiles for asymmetric synthesis. J. Am. Chem. Soc. 133, 16794–16797 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Matteson, D. S. & Majumdar, D. α-Chloro boronic esters from homologation of boronic esters. J. Am. Chem. Soc. 102, 7588–7590 (1980).

    Article  CAS  Google Scholar 

  13. Matteson, D. S. & Majumdar, D. Homologation of boronic esters to α-chloro boronic esters. Organometallics 2, 1529–1535 (1983).

    Article  CAS  Google Scholar 

  14. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. Org. React. 105, 427–860 (2021).

    Google Scholar 

  15. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).

    Article  CAS  Google Scholar 

  16. Matteson, D. S. α-Halo boronic esters in asymmetric synthesis. Tetrahedron 54, 10555–10607 (1998).

    Article  CAS  Google Scholar 

  17. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Stymiest, J. L., Dutheuil, G., Mahmood, A. & Aggarwal, V. K. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007).

    Article  CAS  Google Scholar 

  19. Casoni, G. et al. α-Sulfinyl benzoates as precursors to Li and Mg carbenoids for the stereoselective iterative homologation of boronic esters. J. Am. Chem. Soc. 139, 11877–11886 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Namirembe, S. & Morken, J. P. Reactions of organoboron compounds enabled by catalyst-promoted metalate shifts. Chem. Soc. Rev. 48, 3464–3474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aparece, M. D., Gao, C., Lovinger, G. J. & Morken, J. P. Vinylidenation of organoboronic esters enabled by a Pd-catalyzed metallate shift. Angew. Chem. Int. Ed. 58, 592–595 (2019).

    Article  CAS  Google Scholar 

  24. Fordham, J. M., Grayson, M. N. & Aggarwal, V. K. Vinylidene homologation of boronic esters and its application to the synthesis of the proposed structure of machillene. Angew. Chem. Int. Ed. 58, 15268–15272 (2019).

    Article  CAS  Google Scholar 

  25. Chen, M., Tugwell, T. H., Liu, P. & Dong, G. Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates. Nat. Synth. 3, 337–346 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, M. et al. Stereospecific alkenylidene homologation of organoboronates by SNV reaction. Nature 631, 328–334 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H., Jing, C., Noble, A. & Aggarwal, V. K. Stereospecific 1,2-migrations of boronate complexes induced by electrophiles. Angew. Chem. Int. Ed. 59, 16859–16872 (2020).

    Article  CAS  Google Scholar 

  28. Trost, B. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Sheldon, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev. 41, 1437–1451 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Charles, M. D., Schultz, P. & Buchwald, S. L. Efficient Pd-catalyzed amination of heteroaryl halides. Org. Lett. 7, 3965–3968 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Gillis, E. P. & Burke, M. D. A simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., Grillo, A. S. & Burke, M. D. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks. Acc. Chem. Res. 48, 2297–2307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noguchi, H., Hojo, K. & Suginome, M. Boron-masking strategy for the selective synthesis of oligoarenes via iterative Suzuki–Miyaura coupling. J. Am. Chem. Soc. 129, 758–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Iwadate, N. & Suginome, M. Differentially protected diboron for regioselective diboration of alkynes: internal-selective cross-coupling of 1-alkene-1,2-diboronic acid derivatives. J. Am. Chem. Soc. 132, 2548–2549 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Peng, S., Liu, G. & Huang, Z. Mixed diboration of alkynes catalyzed by LiOH: regio- and stereoselective synthesis of cis-1,2-diborylalkenes. Org. Lett. 20, 7363–7366 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Kojima, C., Lee, K.-H., Lin, Z. & Yamashita, M. Direct and base-catalyzed diboration of alkynes using the unsymmetrical diborane(4), pinB-BMes2. J. Am. Chem. Soc. 138, 6662–6669 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, L., Zhang, S. & Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev. 44, 8848–8858 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Viso, A., Fernández, de la Pradilla, R. & Tortosa, M. Site-selective functionalization of C(sp3) vicinal boronic esters. ACS Catal. 12, 10603–10620 (2022).

    Article  CAS  Google Scholar 

  39. Yang, C.-T., Zhang, Z.-Q., Liu, Y.-C. & Liu, L. Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides. Angew. Chem. Int. Ed. 50, 3904–3907 (2011).

    Article  CAS  Google Scholar 

  40. Molander, G. A. & Sandrock, D. L. Orthogonal reactivity in boryl-substituted organotrifluoroborates. J. Am. Chem. Soc. 130, 15792–15793 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baumann, J. E. & Lalic, G. Differential dihydrofunctionalization: a dual catalytic three-component coupling of alkynes, alkenyl bromides, and pinacolborane. Angew. Chem. Int. Ed. 61, e202206462 (2022).

    Article  CAS  Google Scholar 

  42. Hashimoto, T., Hatakeyama, T. & Nakamura, M. Stereospecific cross-coupling between alkenylboronates and alkyl halides catalyzed by iron–bisphosphine complexes. J. Org. Chem. 77, 1168–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Thiede, S. et al. Regiodivergent iodocyclizations for the highly diastereoselective synthesis of syn- and anti-hydroxyl-isochromanones and -isobenzofuranones: concise synthesis of the isochromanone core of the ajudazols. Synthesis 48, 697–709 (2016).

    CAS  Google Scholar 

  44. Shimamoto, Y., Sunaba, H., Ishida, N. & Murakami, M. Regioselective construction of indene skeletons by palladium-catalyzed annulation of alkynylborates with o-iodophenyl ketones. Eur. J. Org. Chem. 2013, 1421–1424 (2013).

    Article  CAS  Google Scholar 

  45. Lee, M. T. & Lalic, G. Mechanism of Z-selective hydroalkylation of terminal alkynes. J. Am. Chem. Soc. 143, 16663–16672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thiele, K. H., Engelhardt, G., Köhler, J. & Arnstedt, M. Beitrag zur Kenntnis von Allyl-Zink-Verbingungen II. Darstellung und Eigenschaften von Dimethallylzink und Dicrotylzink. J. Organomet. Chem. 9, 385–393 (1967).

    Article  CAS  Google Scholar 

  47. Srebnik, M. Stereospecific preparation of trisubstituted allylic alcohols by alkene transfer from boron to zinc. Tetrahedron Lett. 32, 2449–2452 (1991).

    Article  CAS  Google Scholar 

  48. Oppolzer, W. & Radinov, R. N. Catalytic asymmetric synthesis of secondary (E)-allyl alcohols from acetylenes and aldehydes via (1-alkenyl)zinc intermediates. Preliminary communication. Helv. Chim. Acta 75, 170–173 (1992).

    Article  CAS  Google Scholar 

  49. Bart, S. C., Hawrelak, E. J., Schmisseur, A. K., Lobkovsky, E. & Chirik, P. J. Synthesis, reactivity, and solid state structures of four-coordinate iron(II) and manganese(II) alkyl complexes. Organometallics 23, 237–246 (2004).

    Article  CAS  Google Scholar 

  50. Panne, P. & Fox, J. M. Rh-catalyzed intermolecular reactions of alkynes with α-diazoesters that possess β-hydrogens: ligand-based control over divergent pathways. J. Am. Chem. Soc. 129, 22–23 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support has been provided by the National Institutes of Health (National Institute of General Medical Sciences grant no. R35GM158014 to G.L. and grant no. S10OD030224-01 to the University of Washington, Department of Chemistry NMR facility). We thank H. W. Kaminsky and S. M. Krajewski for determination of the X-ray crystal structure.

Author information

Authors and Affiliations

Authors

Contributions

B.W.G. conceived of, designed and performed the experiments. B.W.G. and G.L. co-wrote the paper.

Corresponding author

Correspondence to Gojko Lalic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, experimental procedures, product characterization data and NMR spectra.

Supplementary Data 1

Crystallographic data for compound 29; CCDC reference 2370487.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, B.W., Lalic, G. Catalytic C(sp2) homologation of alkylboranes. Nat. Chem. 17, 1418–1424 (2025). https://doi.org/10.1038/s41557-025-01854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01854-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing