Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deaminative Giese-type reaction

Abstract

Primary aliphatic amines are essential components in numerous functional molecules and rank among the most readily available commercial building blocks. Although commonly utilized as nitrogen nucleophiles, their application as alkyl sources for constructing (sp3)C–C(sp3) bonds remains a notable challenge. Here we present an approach integrating nitrogen-atom deletion into the aza-Michael reaction, thereby redirecting the classical pathway from (sp3)C–N bond formation to (sp3)C–C(sp3) bond construction. Leveraging commercially available O-diphenylphosphinylhydroxylamine as an efficient nitrogen-deletion reagent, this method enables a wide variety of primary aliphatic amines to serve as alkyl sources in couplings with structurally diverse electron-deficient olefins. This Giese-type reaction proceeds under mild conditions, achieves completion within 10 min and exhibits broad functional-group compatibility. By bridging two foundational transformations—the aza-Michael reaction and the Giese-type reaction—this approach interlinks their product spaces through a unified precursor library, substantially enhancing synthetic utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and our strategy to access a direct deaminative Giese-type reaction.
Fig. 2: Late-stage modification and synthesis of bioactive molecules.
Fig. 3: Multiple functionalization using a nitrogen atom as a traceless directing group.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, S. A. Amines: Synthesis, Properties and Applications (Cambridge Univ. Press, 2004).

  3. Rulev, Y. A. Aza-Michael reaction: a decade later—is the research over? Eur. J. Org. Chem. 26, e202300451 (2023).

    Article  CAS  Google Scholar 

  4. Zabolotna, Y. et al. A close-up look at the chemical space of commercially available building blocks for medicinal chemistry. J. Chem. Inf. Model. 62, 2171–2218 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Ouyang, K., Hao, W., Zhang, W.-X. & Xi, Z. Transition-metal-catalyzed cleavage of C–N single bonds. Chem. Rev. 115, 12045–12090 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q., Su, Y., Li, L. & Huang, H. Transition-metal catalysed C–N bond activation. Chem. Soc. Rev. 45, 1257–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kong, D., Moon, P. J. & Lundgren, R. J. Radical coupling from alkyl amines. Nat. Catal. 2, 473–476 (2019).

    Article  CAS  Google Scholar 

  9. Davey, S. Activating amines. Nat. Chem. https://doi.org/10.1038/nchem.867 (2010).

  10. Li, Y., Xiao, F., Guo, Y. & Zeng, Y. Recent developments in deaminative functionalization of alkyl amines. Eur. J. Org. Chem. 8, 1215–1228 (2021).

    Article  Google Scholar 

  11. Berger, K. J. et al. Direct deamination of primary amines via isodiazene intermediates. J. Am. Chem. Soc. 143, 17366–17373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dherange, B. D. et al. Direct deaminative functionalization. J. Am. Chem. Soc. 145, 17–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Xue, J.-H. et al. Deaminative bromination, chlorination, and iodination of primary amines. iScience 26, 106255 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue, J.-H., Li, Y., Liu, Y., Li, Q. & Wang, H. Site-specific deaminative trifluoromethylation of aliphatic primary amines. Angew. Chem. Int. Ed. 63, e202319030 (2024).

    Article  CAS  Google Scholar 

  15. Kim, M. et al. Accessing sulfonamides via formal SO2 insertion into C–N bonds. Nat. Chem. https://doi.org/10.1038/s41557-025-01848-2 (2025).

  16. Ma, P., Guo, T. & Lu, H. Hydro- and deutero-deamination of primary amines using O-diphenylphosphinylhydroxylamine. Nat. Commun. 15, 10190 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Narayanam, J. M., Tucker, J. W. & Stephenson, C. R. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen, J. D., D’Amato, E. M., Narayanam, J. M. R. & Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 4, 854–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Kitcatt, D., Nicolle, S. & Lee, A. L. Direct decarboxylative Giese reactions. Chem. Soc. Rev. 51, 1415–1453 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, J. Z., Sakai, H. A. & MacMillan, D. W. C. Alcohols as alkylating agents: photoredox-catalyzed conjugate alkylation via in situ deoxygenation. Angew. Chem. Int. Ed. 61, e202207150 (2022).

    Article  CAS  Google Scholar 

  22. Gualandi, A. et al. Photocatalytic radical alkylation of electrophilic olefins by benzylic and alkylic zinc-sulfinates. ACS Catal. 7, 5357–5362 (2017).

    Article  CAS  Google Scholar 

  23. Giese, B., González-Gómez, J. A. & Witzel, T. The scope of radical CC-coupling by the “tin method”. Angew. Chem. Int. Ed. 23, 69–70 (1984).

    Article  Google Scholar 

  24. Juliá, F., Constantin, T. & Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 122, 2292–2352 (2022).

    Article  PubMed  Google Scholar 

  25. Gant Kanegusuku, A. L. & Roizen, J. L. Recent advances in photoredox-mediated radical conjugate addition reactions: an expanding toolkit for the Giese reaction. Angew. Chem. Int. Ed. 60, 21116–21149 (2021).

    Article  CAS  Google Scholar 

  26. Gao, Y. et al. Recent progress in fragmentation of Katritzky salts enabling formation of C–C, C–B, and C–S bonds. Top. Curr. Chem. 380, 25–87 (2022).

    Article  CAS  Google Scholar 

  27. Correia, J. T. M. et al. Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors. Chem. Commun. 56, 503–514 (2020).

    Article  Google Scholar 

  28. Wu, J., Grant, P. S., Li, X., Noble, A. & Aggarwal, V. K. Catalyst-free deaminative functionalizations of primary amines by photoinduced single-electron transfer. Angew. Chem. Int. Ed. 58, 5697–5701 (2019).

    Article  CAS  Google Scholar 

  29. Rössler, S. L. et al. Pyridinium salts as redox-active functional group transfer reagents. Angew. Chem. Int. Ed. 59, 9264–9280 (2020).

    Article  Google Scholar 

  30. Ashley, M. A. & Rovis, T. Photoredox-catalyzed deaminative alkylation via C–N bond activation of primary amines. J. Am. Chem. Soc. 142, 18310–18316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dorsheimer, J. R., Ashley, M. A. & Rovis, T. Dual nickel/photoredox-catalyzed deaminative cross-coupling of sterically hindered primary amines. J. Am. Chem. Soc. 143, 19294–19299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dorsheimer, J. R. & Rovis, T. Late-stage isotopic exchange of primary amines. J. Am. Chem. Soc. 145, 24367–24374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marchese, A. D., Dorsheimer, J. R. & Rovis, T. Photoredox-catalyzed generation of tertiary anions from primary amines via a radical polar crossover. Angew. Chem. Int. Ed. 63, e202317563 (2024).

    Article  CAS  Google Scholar 

  34. Quirós, I. et al. Isonitriles as alkyl radical precursors in visible light mediated hydro- and deuterodeamination reactions. Angew. Chem. Int. Ed. 63, e202317683 (2024).

    Article  Google Scholar 

  35. Ma, Y.-Q., Zhang, M. & Tian, S.-K. Silyl radical as an isocyanide transfer agent for Giese-type reactions involving aliphatic amines. Org. Lett. 26, 5172–5176 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, E.-Q., Lindsley, C. W., Chang, J. & Yu, B. Molecular skeleton editing for new drug discovery. J. Med. Chem. 67, 13509–13511 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Unsworth, W. P. & Avestro, A.-J. Nitrogen deletion offers fresh strategy for organic synthesis. Nature 593, 203–204 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, B. & Lu, H. N-atom deletion involving rearrangement of sulfamoyl azides or triazanium salts. Acc. Chem. Res. 58, 919–932 (2025).

    Article  CAS  PubMed  Google Scholar 

  40. Zippel, C., Seibert, J. & Bräse, S. Skeletal editing—nitrogen deletion of secondary amines by anomeric amide reagents. Angew. Chem. Int. Ed. 60, 19522–19524 (2021).

    Article  CAS  Google Scholar 

  41. Shimazumi, R. & Tobisu, M. Unimolecular fragment coupling: a new bond-forming methodology via the deletion of atom(s). JACS Au 4, 1676–1695 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zou, X., Zou, J., Yang, L., Li, G. & Lu, H. Thermal rearrangement of sulfamoyl azides: reactivity and mechanistic study. J. Org. Chem. 82, 4677–4688 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Qin, H. et al. N-atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).

    Article  CAS  Google Scholar 

  44. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Wright, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1]pentanes from aza-bicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Holovach, S. et al. C–C coupling through nitrogen deletion: application to library synthesis. Chem. Eur. J. 29, e202203470 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Masson-Makdissi, J. et al. Evidence for dearomatizing spirocyclization and dynamic effects in the quasi-stereospecific nitrogen deletion of tetrahydroisoquinolines. J. Am. Chem. Soc. 146, 17719–17727 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, T., Li, J., Cui, Z., Wang, Z. & Lu, H. C(sp3)–C(sp3) bond formation through nitrogen deletion of secondary amines using O-diphenylphosphinylhydroxylamine. Nat. Synth. 3, 913–921 (2024).

    Article  CAS  Google Scholar 

  49. Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Onnuch, P., Ramagonolla, K. & Liu, R. Y. Aminative Suzuki–Miyaura coupling. Science 383, 1019–1024 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Rieder, C. J. & Smith, M. V. An unexpected incident during the manufacture of O-(diphenylphosphinyl)hydroxylamine. Org. Process Res. Dev. 25, 2308–2314 (2021).

    Article  CAS  Google Scholar 

  52. Tsien, J., Hu, C., Merchant, R. R. & Qin, T. Three-dimensional saturated C(sp3)-rich bioisosteres for benzene. Nat. Rev. Chem. 8, 605–627 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yasukawa, T., Håheim, K. S. & Cossy, J. Synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes by cross-coupling induced by transition metals—formation of C–C bonds. Org. Biomol. Chem. 21, 7666–7680 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Levin, M. D., Kaszynski, P. & Michl, J. Bicyclo[1.1.1]pentanes, [n]staffanes, [1.1.1]propellanes, and tricyclo[2.1.0.02,5]pentanes. Chem. Rev. 100, 169–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Marson, C. M.; Savy, P. in Comprehensive Organic Functional Group Transformation Vol. II (ed. Ramsden, C. A.) 255 (Elsevier, 2004).

  56. Shioiri, T., Ninomiya, K. & Yamada, S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc. 94, 6203–6205 (1972).

    Article  CAS  PubMed  Google Scholar 

  57. Norman, A. R., Yousif, M. N. & McErlean, C. S. P. Photoredox-catalyzed indirect acyl radical generation from thioesters. Org. Chem. Front. 5, 3267–3298 (2018).

    Article  CAS  Google Scholar 

  58. Dutta, S., Li, B., Rickertsen, D. R. L., Valles, D. A. & Seidel, D. C–H bond functionalization of amines: a graphical overview of diverse methods. SynOpen 5, 173–228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, W., Cao, X. & Yang, X. Transition-metal-free methods for the remote C–H bond functionalization of cyclic amines. Asian J. Org. Chem. 12, e202200547 (2023).

    Article  CAS  Google Scholar 

  60. Meng, X., Dong, Y., Liu, Q. & Wang, W. Organophotocatalytic α-deuteration of unprotected primary amines via H/D exchange with D2O. Chem. Commun. 60, 296–299 (2024).

    Article  CAS  Google Scholar 

  61. Ryder, A. S. H. et al. Photocatalytic α-tertiary amine synthesis via C–H alkylation of unmasked primary amines. Angew. Chem. Int. Ed. 59, 14986–14991 (2020).

    Article  CAS  Google Scholar 

  62. Liu, Y. & Ge, H. Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group. Nat. Chem. 9, 26–32 (2017).

    Article  Google Scholar 

  63. Chen, Y.-Q. et al. Overcoming the limitations of γ- and δ-C–H arylation of Amines through ligand development. J. Am. Chem. Soc. 140, 17884–17894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, Y., Young, M. C., Wang, C., Magness, D. M. & Dong, G. Catalytic C(sp3)−H arylation of free primary amines with an exo directing group generated in situ. Angew. Chem. Int. Ed. 55, 9084–9087 (2016).

    Article  CAS  Google Scholar 

  65. Wang, H., Tong, H.-R., He, G. & Chen, G. An enantioselective bidentate auxiliary directed palladium-catalyzed benzylic C–H arylation of amines using a BINOL phosphate ligand. Angew. Chem. Int. Ed. 55, 15387–15397 (2016).

    Article  CAS  Google Scholar 

  66. Zhang, S.-Y. et al. Efficient alkyl ether synthesis via palladium-catalyzed, picolinamide-directed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds at remote positions. J. Am. Chem. Soc. 134, 7313–7316 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Newcomb, M. in Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Chatgilialoglu, C. & Studer, A.) (Wiley, 2012).

  68. Qin, H., Guo, T., Lin, K., Li, G. & Lu, H. Synthesis of dienes from pyrrolidines using skeletal modification. Nat. Commun. 14, 7307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steiniger, K. A., Lamb, M. C. & Lambert, T. H. Cross-coupling of amines via photocatalytic denitrogenation of in situ generated diazenes. J. Am. Chem. Soc. 145, 11524–11529 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Natural Science Foundation of China (22071100, 22271148) and the Natural Science Foundation of Jiangsu Province (BK20231400).

Author information

Authors and Affiliations

Authors

Contributions

P.M. and H.L. designed the experiments. P.M. and Z.C. performed the experiments and analysed the data. All authors participated in writing the paper. H.L. conceived and supervised the project.

Corresponding author

Correspondence to Hongjian Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shi-Kai Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Experimental procedures and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Cui, Z. & Lu, H. Deaminative Giese-type reaction. Nat. Chem. 17, 1556–1564 (2025). https://doi.org/10.1038/s41557-025-01888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01888-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing