Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lattice O–O ligands in Fe-incorporated hydroxides enhance water oxidation electrocatalysis

Subjects

Abstract

Understanding the structural dynamics of ligands and their interaction with catalytic centres under reaction conditions remains a fundamental challenge, yet it is essential for catalyst design. Here we reveal an in situ transformation of Ni–Fe hydroxide into a stable superoxo-hydroxide phase, which is accompanied by the formation of lattice O–O (Olatt–Olatt) ligands, as demonstrated using operando 18O-labelling spectroelectrochemistry and machine-learning-assisted global optimization. By correlating the intrinsic activity of Fe with the Olatt–Olatt concentration across a series of Fe-incorporated transition-metal hydroxides and oxides, we demonstrate that Olatt–Olatt triggers Fe activation for oxygen evolution electrocatalysis—a finding further supported by first-principles calculations. Oxygen production proceeds via an adsorbate evolution mechanism, and the enhanced reaction kinetics stem from the lowered activation energy at surface Fe sites in the newly formed superoxo-hydroxide structure. This work offers a strategic framework for designing high-performance Fe-incorporated electrocatalysts and underscores the pivotal role of ligand dynamics in activating catalytic centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stable Olatt–Olatt ligands identified via correlative operando spectroscopy.
Fig. 2: Olatt–Olatt ligand-triggered OER enhancement in Fe-incorporated hydroxides.
Fig. 3: Machine-learning-guided prediction of Olatt–Olatt formation under applied potentials.
Fig. 4: Mechanism of Olatt–Olatt ligand-triggered OER enhancement in Fe-incorporated hydroxides.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information. The raw data files in another format are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The software code of LASP and G-NN potential used within the article is available from the corresponding authors upon request or at http://www.lasphub.com.

References

  1. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  3. Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).

    Article  Google Scholar 

  4. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  5. Bockris, O. J. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    Article  CAS  Google Scholar 

  6. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, Y. et al. Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nat. Catal. 3, 554–563 (2020).

    Article  CAS  Google Scholar 

  8. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015).

    Article  CAS  Google Scholar 

  10. Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    Article  Google Scholar 

  11. Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J. Y. et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 137, 15090–15093 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Čorić, I. et al. Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017).

    Article  CAS  Google Scholar 

  19. Huang, Z. F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    Article  CAS  Google Scholar 

  20. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).

    Article  CAS  Google Scholar 

  22. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    Article  CAS  Google Scholar 

  23. Roy, C. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    Article  CAS  Google Scholar 

  24. Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, H. S. & Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0<x<0.27) oxygen evolving catalyst: kinetics of the ‘fast’ iron sites. J. Am. Chem. Soc. 138, 313–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Stevens, M. B., Trang, C. D. M., Enman, L. J., Deng, J. & Boettcher, S. W. Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361–11364 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S., Banjac, K., Lingenfelder, M. & Hu, X. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58, 10295–10299 (2019).

    Article  CAS  Google Scholar 

  30. Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao, Y. et al. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143, 1493–1502 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    Article  CAS  Google Scholar 

  33. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cramer, C. J., Tolman, W. B., Theopold, K. H. & Rheingold, A. L. Variable character of O–O and M–O bonding in side-on (η2) 1:1 metal complexes of O2. Proc. Natl Acad. Sci. USA 100, 3635–3640 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, J., Sarangi, R. & Nam, W. Mononuclear metal–O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands. Acc. Chem. Res. 45, 1321–1330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, S. et al. Evidence of matrix lattice distortion in Zn1−xCoxO nanocrystals. J. Phys. Chem. C 113, 4263–4269 (2009).

    Article  CAS  Google Scholar 

  37. Eum, D. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 21, 664–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Frati, F., Hunault, M. O. J. Y. & de Groot, F. M. F. Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Sawatzky, G., Green, R., Mall, E., Bc, V. & Vt, C. in Quantum Materials: Experiments and Theory Modeling and Simulation vol. 6 (Pavarini, E. et al.) 1–36 (Verlag des Forschungszentrum, 2016).

  41. Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    Article  CAS  Google Scholar 

  42. Martirez, J. & Carter, E. A. Unraveling oxygen evolution on iron-doped β-nickel oxyhydroxide: the key role of highly active molecular-like sites. J. Am. Chem. Soc. 141, 693–705 (2018).

    Article  PubMed  Google Scholar 

  43. Han, Y. et al. Preparation of Ni2+−Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chem. Mater. 20, 360–363 (2008).

    Article  CAS  Google Scholar 

  44. Tong, Y. et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 140, 11165–11169 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, J., Martin, B. R., Clearfield, A., Luo, Z. & Sun, L. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 7, 9448–9451 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, P., Patterson, M. L., Tadayyoni, M. A. & Weaver, M. J. Gold as a ubiquitous substrate for intense surface-enhanced Raman scattering. Langmuir 1, 173–176 (1985).

    Article  CAS  Google Scholar 

  47. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  48. Wei, C. et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 48, 2518–2534 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, S. D., Shang, C., Zhang, X. J. & Liu, Z. P. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, S. D., Shang, C., Kang, P. L., Zhang, X. J. & Liu, Z. P. LASP: fast global potential energy surface exploration. WIREs Comput Mol Sci. 9, e1415 (2019).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  54. Li, Y. F. & Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148–1153 (2014).

    Article  CAS  Google Scholar 

  55. Fattebert, J. L. & Gygi, F. Linear-scaling first-principles molecular dynamics with plane-waves accuracy. Phys. Rev. B 73, 115124 (2006).

    Article  Google Scholar 

  56. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (grant no. 2022YFA1505200), National Natural Science Foundation of China (grant nos. 21972023, 22072030, 22022301, 22272029 and 22472036), Science and Technology Commission of Shanghai Municipality (grant nos. 22520711100, 23ZR1406900 and 2024ZDSYS02) and the Fundamental Research Funds for the Central Universities (grant no. 20720220008).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. designed and conceived the experiment. G.S. fabricated the electrodes and carried out electrochemical and in situ spectroscopy characterizations. T.L. and Q.X. performed in situ XRD measurements. C.Y., H.G., H.T., S. Zhao, C.Z., Y.S. and J.W. assisted with other physical characterizations. X.L. and P.-C.C. conducted the TEM characterization. Jiong Li and S. Zhang helped on the XAS data acquisition. J.S. and K.H.L.Z. worked on the thin-film catalyst preparation. Jili Li, Y.-F.L. and Z.-P.L. contributed to the DFT calculations. G.S., Jili Li, Y.-F.L and L.Z. cowrote the paper. All authors discussed the results and provided feedback on the paper.

Corresponding authors

Correspondence to Ye-Fei Li or Liming Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jakub Drnec, Brett Savoie, Li Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Figs. 1–45 and Tables 1–15.

Supplementary Data 1

Crystal structures of key OER intermediate states.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Li, J., Lu, T. et al. Lattice O–O ligands in Fe-incorporated hydroxides enhance water oxidation electrocatalysis. Nat. Chem. 17, 1607–1614 (2025). https://doi.org/10.1038/s41557-025-01898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01898-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing