Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed asymmetric cross-coupling reactions tolerant of highly reactive radicals

Abstract

Achieving high enantioselectivity in asymmetric catalysis, especially with very reactive species such as radicals, often comes at the expense of generality. Radicals with exceptionally high reactivity are typically unsuitable for existing asymmetric methodologies. Here we present a general catalytic approach to asymmetric radical cross-coupling that combines copper-catalysed enantioselective stereocentre resolution or formation with copper-mediated, chirality-transferring radical substitution. This sequential strategy enables the efficient coupling of over 50 distinct carbon-, nitrogen-, oxygen-, sulfur- and phosphorus-centred radicals, including highly reactive methyl, tert-butoxyl and phenyl radicals, yielding structurally diverse C-, P- and S-chiral compounds with outstanding enantioselectivity. Our method thus provides a unified platform for the synthesis of carbon, phosphorus and sulfur stereocentres, with important implications for the preparation of chiral molecules relevant to medicinal chemistry and related disciplines. Furthermore, this sequential stereodiscrimination and chirality transfer strategy offers a promising blueprint for the development of highly enantioselective methodologies applicable to other classes of highly reactive species beyond radicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequential stereodiscrimination and chirality transfer strategy for asymmetric transformations of highly reactive radicals.
Fig. 2: Inspirations and reaction development.
Fig. 3: Synthetic utility and mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information (experimental procedures, characterization data and DFT calculations). Crystallographic data are also available free of charge from the Cambridge Crystallographic Database Centre (CCDC) under CCDC reference numbers 2289793 (for M1), 2375977 (for (R)-S5), 2375978 (for 9), 2375976 (for 20), 2289792 (for 36), 2289795 (for 46) and 2289794 (for 57). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms (Elsevier, 2005).

  2. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    PubMed  Google Scholar 

  3. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    PubMed  Google Scholar 

  4. Wagen, C. C., McMinn, S. E., Kwan, E. E. & Jacobsen, E. N. Screening for generality in asymmetric catalysis. Nature 610, 680–686 (2022).

    PubMed  PubMed Central  Google Scholar 

  5. Rein, J. et al. Generality-oriented optimization of enantioselective aminoxyl radical catalysis. Science 380, 706–712 (2023).

    PubMed  PubMed Central  Google Scholar 

  6. Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).

    PubMed  Google Scholar 

  7. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    PubMed  Google Scholar 

  8. Lee, W.-C. C. & Zhang, X. P. Metalloradical catalysis: general approach for controlling reactivity and selectivity of homolytic radical reactions. Angew. Chem. Int. Ed. 63, e202320243 (2024).

    Google Scholar 

  9. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    PubMed  Google Scholar 

  10. Zhang, H. et al. Site- and enantioselective allylic and propargylic C–H oxidation enabled by copper-based biomimetic catalysis. Nat. Catal. 8, 58–66 (2025).

    Google Scholar 

  11. Hioe, J. & Zipse, H. in Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Chatgilialoglu, C. & Studer, A.) https://doi.org/10.1002/9781119953678.rad012 (Wiley, 2012).

  12. Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).

    Google Scholar 

  13. Li, J. et al. Enantioselective alkylation of α-amino C(sp3)−H bonds via photoredox and nickel catalysis. Nat. Catal. 7, 889–899 (2024).

    Google Scholar 

  14. Upton, C. J. & Incremona, J. H. Bimolecular homolytic substitution at carbon. Stereochemical investigation. J. Org. Chem. 41, 523–530 (1976).

    Google Scholar 

  15. Walton, J. C. Homolytic substitution: a molecular ménage à trois. Acc. Chem. Res. 31, 99–107 (1998).

    Google Scholar 

  16. Zhang, Y., Li, K.-D. & Huang, H.-M. Bimolecular homolytic substitution (SH2) at a transition metal. ChemCatChem 16, e202400955 (2024).

    Google Scholar 

  17. Milan, M., Bietti, M. & Costas, M. Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chem. Commun. 54, 9559–9570 (2018).

    Google Scholar 

  18. Liu, W., Lavagnino, M. N., Gould, C. A., Alcázar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation. Science 374, 1258–1263 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Li, L.-J. et al. Enantioselective construction of quaternary stereocenters via cooperative photoredox/Fe/chiral primary amine triple catalysis. J. Am. Chem. Soc. 146, 9404–9412 (2024).

    PubMed  Google Scholar 

  20. Wang, Y., Wen, X., Cui, X. & Zhang, X. P. Enantioselective radical cyclization for construction of 5-membered ring structures by metalloradical C–H alkylation. J. Am. Chem. Soc. 140, 4792–4796 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).

    PubMed  PubMed Central  Google Scholar 

  22. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022).

    PubMed  Google Scholar 

  23. Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388–12396 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Lang, K., Li, C., Kim, I. & Zhang, X. P. Enantioconvergent amination of racemic tertiary C–H bonds. J. Am. Chem. Soc. 142, 20902–20911 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Xu, P., Xie, J., Wang, D.-S. & Zhang, X. P. Metalloradical approach for concurrent control in intermolecular radical allylic C−H amination. Nat. Chem. 15, 498–507 (2023).

    PubMed  PubMed Central  Google Scholar 

  26. Xu, H., Wang, D.-S., Zhu, Z., Deb, A. & Zhang, X. P. New mode of asymmetric induction for enantioselective radical N-heterobicyclization via kinetically stable chiral radical center. Chem 10, 283–298 (2024).

    PubMed  Google Scholar 

  27. Tian, Y. et al. A general copper-catalysed enantioconvergent C(sp3)–S cross-coupling via biomimetic radical homolytic substitution. Nat. Chem. 16, 466–475 (2024).

    PubMed  Google Scholar 

  28. Zhang, Y.-F. et al. Asymmetric amination of alkyl radicals with two minimally different alkyl substituents. Science 388, 283–291 (2025).

    PubMed  Google Scholar 

  29. Cheng, Y.-F. et al. Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling. Nat. Chem. 15, 395–404 (2023).

    PubMed  Google Scholar 

  30. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Omann, L., Königs, C. D. F., Klare, H. F. T. & Oestreich, M. Cooperative catalysis at metal–sulfur bonds. Acc. Chem. Res. 50, 1258–1269 (2017).

    PubMed  Google Scholar 

  33. Crich, D. Homolytic substitution at the sulfur atom as a tool for organic synthesis. Helv. Chim. Acta 89, 2167–2182 (2006).

    Google Scholar 

  34. Garrido-Castro, A. F., Salaverri, N., Maestro, M. C. & Alemán, J. Intramolecular homolytic substitution enabled by photoredox catalysis: sulfur, phosphorus, and silicon heterocycle synthesis from aryl halides. Org. Lett. 21, 5295–5300 (2019).

    PubMed  Google Scholar 

  35. Coulomb, J. et al. Intramolecular homolytic substitution of sulfinates and sulfinamides. Chem. Eur. J. 15, 10225–10232 (2009).

    PubMed  Google Scholar 

  36. Zhong, W. et al. Synthesis and reactivity of the imido-bridged metallothiocarboranes CpCo(S2C2B10H10)(NSO2R). Organometallics 31, 6658–6668 (2012).

    Google Scholar 

  37. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    PubMed  Google Scholar 

  38. van Dijkman, T. F. et al. Extremely bulky copper(I) complexes of [HB(3,5-{1-naphthyl}2pz)3] and [HB(3,5-{2-naphthyl}2pz)3] and their self-assembly on graphene. Dalton Trans. 46, 6433–6446 (2017).

    PubMed  Google Scholar 

  39. Grotewold, J., Lissi, E. A. & Scaiano, J. C. Mechanism of the autoxidation of triethylborane. Part I. Reaction in the gas phase. J. Chem. Soc. B https://doi.org/10.1039/J29690000475 (1969).

  40. Cai, A., Yan, W., Wang, C. & Liu, W. Copper-catalyzed difluoromethylation of alkyl iodides enabled by aryl radical activation of carbon–iodine bonds. Angew. Chem. Int. Ed. 60, 27070–27077 (2021).

    Google Scholar 

  41. Luo, Y.-R. Comprehensive Handbook of Chemcial Bond Energies (CRC Press, 2007).

  42. Parsaee, F. et al. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 5, 486–499 (2021).

    PubMed  Google Scholar 

  43. Garwood, J. J. A., Chen, A. D. & Nagib, D. A. Radical polarity. J. Am. Chem. Soc. 146, 28034–28059 (2024).

    Google Scholar 

  44. Tsentalovich, Y. P., Kulik, L. V., Gritsan, N. P. & Yurkovskaya, A. V. Solvent effect on the rate of β-scission of the tert-butoxyl radical. J. Phys. Chem. A 102, 7975–7980 (1998).

    Google Scholar 

  45. Zhang, Z.-X. & Willis, M. C. Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry. Chem 8, 1137–1146 (2022).

    Google Scholar 

  46. Zhang, X., Wang, F. & Tan, C.-H. Asymmetric synthesis of S(IV) and S(VI) stereogenic centers. JACS Au 3, 700–714 (2023).

    PubMed  PubMed Central  Google Scholar 

  47. Zhang, X., Ang, E. C. X., Yang, Z., Kee, C. W. & Tan, C.-H. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 604, 298–303 (2022).

    PubMed  PubMed Central  Google Scholar 

  48. Greenwood, N. S., Champlin, A. T. & Ellman, J. A. Catalytic enantioselective sulfur alkylation of sulfenamides for the asymmetric synthesis of sulfoximines. J. Am. Chem. Soc. 144, 17808–17814 (2022).

    PubMed  PubMed Central  Google Scholar 

  49. van Dijk, L. et al. Data science-enabled palladium-catalyzed enantioselective aryl-carbonylation of sulfonimidamides. J. Am. Chem. Soc. 145, 20959–20967 (2023).

    PubMed  Google Scholar 

  50. Liang, Q. et al. Enantioselective Chan–Lam S-arylation of sulfenamides. Nat. Catal. 7, 1010–1020 (2024).

    PubMed  PubMed Central  Google Scholar 

  51. Champlin, A. T., Kwon, N. Y. & Ellman, J. A. Enantioselective S-alkylation of sulfenamides by phase-transfer catalysis. Angew. Chem. Int. Ed. 63, e202408820 (2024).

    Google Scholar 

  52. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev. 110, 3600–3740 (2010).

    PubMed  Google Scholar 

  53. Tsuzuki, S. & Kano, T. Asymmetric synthesis of chiral sulfimides through the O-alkylation of enantioenriched sulfinamides and addition of carbon nucleophiles. Angew. Chem. Int. Ed. 62, e202300637 (2023).

    Google Scholar 

  54. Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Primers 3, 58 (2023).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of SUSTech Core Research Facilities. We acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 22025103, 92256301 and 22331006 to X.-Y.L., 22271133 to Q.-S.G., and W2512004, 22122109 and 22271253 to X.H.), the National Key R&D Program of China (grant nos. 2021YFF0701604 to X.-Y.L., 2022YFC3401104 to Z.D. and 2022YFA1504301 to X.H.), Guangdong Innovative Program (grant nos. 2019BT02Y335 to X.-Y.L. and 2021ZT09C278 to Z.D.), the Guangdong Major Project of Basic and Applied Basic Research (grant no. 2023B0303000020 to X.-Y.L. and Z.D.), Shenzhen Science and Technology Program (grant nos. KQTD20210811090112004 to X.-Y.L. and Q.-S.G., JCYJ20220818100600001 to X.-Y.L., JCYJ20220818100604009 to J.-B.T. and 20220814231741002 to Z.D.), the New Cornerstone Science Foundation through an XPLORER PRIZE (to X.-Y.L.), High-Level of Special Funds (grant no. G03050K003 to X.-Y.L.), High-Level Key Discipline Construction Project (grant no. G030210001 to X.-Y.L. and Q.-S.G.), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no. SN-ZJU-SIAS-006 to X.H.), CAS Youth Interdisciplinary Team (grant no. JCTD-2021-11 to X.H.), the Fundamental Research Funds for the Central Universities (grant nos. 226-2022-00140, 226-2022-00224, 226-2023-00115 and 226-2024-00003 to X.H), the State Key Laboratory of Clean Energy Utilization (grant no. ZJUCEU2020007 to X.H.), the State Key Laboratory of Physical Chemistry of Solid Surfaces (grant no. 202210 to X.H.), a Leading Innovation Team grant from the Department of Science and Technology of Zhejiang Province (grant no. 2022R01005 to X.H.) and the Open Research Fund of the School of Chemistry and Chemical Engineering of Henan Normal University (grant no. 2024Z01 to X.H.). Computational studies were supported by the Center for Computational Science and Engineering of Southern University of Science and Technology and the high-performance computing system at the Department of Chemistry, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

L.-W.F., J.-B.T., L.-L.W. and Z.G. designed the experiments and analysed the data. L.-W.F., J.-B.T., L.-L.W., Z.G., Y.-S.Z., D.-L.Y., L.Q., Y.T., Z.-C.C., F.L., J.-M.X., P.-J.H., W.-L.L., C.-Y.X., C.L. and Z.-L.L. performed the experiments. J.-R.L. and X.H. designed the DFT calculations, and J.-R.L. performed the calculations. X.H., Z.D., Q.-S.G. and X.-Y.L. wrote the paper. Z.D., Q.-S.G. and X.-Y.L. conceived and supervised the project.

Corresponding authors

Correspondence to Xin Hong, Zhe Dong, Qiang-Shuai Gu or Xin-Yuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–22, Experimental procedures, Synthetic procedures, Characterization data, Density functional theory calculations and Mechanistic discussion.

Supplementary Data

Cartesian coordinates of computed species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, LW., Tang, JB., Wang, LL. et al. Copper-catalysed asymmetric cross-coupling reactions tolerant of highly reactive radicals. Nat. Chem. 18, 142–151 (2026). https://doi.org/10.1038/s41557-025-01970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01970-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing